Skip to main content

Tumor-specific Nano-entities for Optical Detection and Hyperthermic Treatment of Breast Cancer

  • Conference paper
Oxygen Transport to Tissue XXIX

Part of the book series: Advances In Experimental Medicine And Biology ((AEMB,volume 614))

Abstract

The ultimate goal of this study is to develop a tumor-specific multi-functional, nano-entity that can be used for both cancer detection and treatment. Low heat (42~45°C) hyperthermia is an effective cancer treatment method with little side effect. Magnetic nanoparticles, such as Fe3O4, can be heated by alternating electromagnetic (AEM) fields at well selected frequencies, without heating normal tissue. Nanogold particles (NGPs) are effective optical absorbers and also excellent fluorescent enhancers. Therefore, coating gold on Fe3O4 particles can enhance the optical contrast as well as keeping the particle property for hyperthermia. Indocyanine green (ICG), a FDA approved fluorophore, has a very low quantum yield, and its fluorescence can be enhanced by linking ICGto gold-coated Fe3O4 nanoparticles. Luteinizing hormone releasing hormone (LHRH), which has high affinity to breast cancer, can be used for tumor-specific targeting. Our study results showed: Fe3O4 particles at a size range of 10~30 nm can be heated well by an AEM field at a rate of 18°C/wt%-minute; the fluorescence of ICG was extensively enhanced by NGPs; LHRH-coated gold nanoparticles provided as much cancer specificity as LHRHalone. Combining these properties in one entity, i.e.,LHRH/ICGlinked, gold-coated Fe3O4 nanoparticles, can be a tumor-specific nano-agent for optical detection and electro-magnetically induced hyperthermia for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Kristian Storm, Hyperthermia in Cancer Therapy, (G. K. Hall Medical Publishers, Boston, MA, 1983).

    Google Scholar 

  2. S. Sharma, S.P. Sandhu, F. D. Patel, S. Ghoshal, B. D. Gupta, and N. S. Yadav, Cervix cancer and hyperthermia: Side-effects of local hyperthermia: results of a prospectively randomized clinical study, Int. J. Hyperthermia, 6 (2), 279–285, (1990).

    Article  PubMed  CAS  Google Scholar 

  3. T. Ohtsubo, H. Igawa, T. Saito, H. matsumoto, H. Park, C. W. Song, E. Kano, and H. Saito, Enhancement of cell killing by induction of apoptosis after treatment with mild hyperthermia at 42°C and cisplatin, Radiation Research, 156, 103–109, (2001).

    Article  PubMed  CAS  Google Scholar 

  4. A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles J. Magn. Magn. Mater. 201, 413–419, (1999).

    Article  CAS  Google Scholar 

  5. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonz'alez-Carreno, and C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys. 36, R182–197, (2003).

    Article  CAS  Google Scholar 

  6. D. Bahadur, and J. Giri, Biomaterials and magnetism, Sadhana, 28 (3 and 4), 639–656, (2003).

    Article  CAS  Google Scholar 

  7. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem., 14, 2161–2175, (2004).

    Article  CAS  Google Scholar 

  8. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, Infrared extinction properties of gold nanoshells, Applied Physics Letters, 78 (19), 2897–2899, (1999).

    Article  Google Scholar 

  9. C. H. Chou, C. D. Chen, and C. R. Wang, Highly Efficient, Wavelength-Tunable, Gold Nanoparticle Based photothermal Nanoconvertors, J. Phys. Chem. B, 109, 11135–11138, (2005).

    Article  PubMed  CAS  Google Scholar 

  10. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol, 35:479–485, (2000).

    Article  PubMed  CAS  Google Scholar 

  11. C. D. Geddes, A. Parfenov, D. Roll, M. J. Uddin, and J. R. Lakowicz, Fluorescence spectral properties of indocyanine green on a roughened platinum electrode: Metal-enhanced fluorescence, Journal of Fluorescence, 13 (6), 453–457, (2003).

    Article  CAS  Google Scholar 

  12. B. Hong and K.A. Kang, Biocompatible, nanogold-particle fluorescence enhancer for fluorophore mediated, optical immunosensor, Biosensors and Bioelectronics, 21(7), 1333–1338, (2006).

    Article  PubMed  CAS  Google Scholar 

  13. R. Eckert, D. Randall, and G. Augustin, Animal Physiology, 3rd Edition, W. H. Freeman and Company, New York, 435–473, (1988).

    Google Scholar 

  14. S. S. Kakar, L. C. Musgrove, D. C. Devor, J. C. Sellers, and J. D. Neill, Cloning, sequencing, and expression of human gonadotropin releasing hormone (GnRH) receptor. Biochem. Biophys. Res. Commun. 189, 289–295, (1992).

    Article  PubMed  CAS  Google Scholar 

  15. M. Preuss, W.G. Schmidt, and F. Bechstedt, Coulombic amino group-metal bonding: Adsorption of adenine on Cu (110), Physical Review Letters, 94, 236102–4, (2005).

    Article  PubMed  CAS  Google Scholar 

  16. S. S. Kakar, W. E. Grizzle, and J. D. Neill, The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary, Mol. Cell. Endocrinol. 106, 145–149, (1994).

    Article  PubMed  CAS  Google Scholar 

  17. S. S. Kakar, M. T. Malik, S. J. Winters, and W. Mazhawidza, Gonadotropin-releasing hormone receptors: structure, expression, and signaling transduction. Vitam Horm. 69, 151–207, (2004).

    PubMed  CAS  Google Scholar 

  18. H. Jin and K. A. Kang, Fluorescent mediated detection of Heterogeneity in a highly scattering media, Adv. Exper. Med. Bio., 566, 167–172, (2005).

    Article  Google Scholar 

  19. T. L. Troy, B. W. Pogue, E. D. Genety, S. B. Poplack, O. L. Osterburg, and K. D. Paulsen, Spectroscopic diffuse optical tomography for the quantitative assessments of hemoglobin concentration and oxygen saturation in human breast tissue, Appl. Opt., 38(25), 5480–5490, (1999).

    Google Scholar 

  20. A.L. Honar and K.A. Kang, Effect of the source and detector configuration on the detectability of breast cancer, Comp. Biochem.Physio - Part A: Molecular & Integrative Physiology, 132(1), 9–15, (2002).

    Article  Google Scholar 

  21. D. F. Bruley, Pulse reduction code written for process identification (personal communication), (1974).

    Google Scholar 

  22. S. S. Kakar, S. J., Winters, W. Zacharias, D. M. Miller, and S. Flynn, Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene. 308, 67–77, (2003).

    Article  PubMed  CAS  Google Scholar 

  23. H. Jin and K. A. Kang, Application of Novel Metal Nanoparticles as Optical/Thermal Agents in Optical Mammography and Hyperthermic Treatment for Breast Cancer, Proceedings of the 33rd ISOTT Annual Meeting, August 28-September 2, Brisbane, Australia, Manuscript Submitted, (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Jin, H., Hong, B., Kakar, S.S., Kang, K.A. (2008). Tumor-specific Nano-entities for Optical Detection and Hyperthermic Treatment of Breast Cancer. In: Kang, K.A., Harrison, D.K., Bruley, D.F. (eds) Oxygen Transport to Tissue XXIX. Advances In Experimental Medicine And Biology, vol 614. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74911-2_31

Download citation

Publish with us

Policies and ethics