Skip to main content

Nature of Motor Control: Perspectives and Issues

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. New York: Springer.

    Google Scholar 

  • Ahn, A. N., & Full, R. J. (2002). A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. The Journal of Experimental Biology, 205, 379–389.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal physiology. Oxford: Oxford University Press.

    Google Scholar 

  • Beer, R. (1995). Computational and dynamical languages for autonomous agents. In R. Port & T. van Gelder (Eds.), Mind as motion: Explorations in the dynamics of cognition (pp. 121–147). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bernstein, N. (1967). The coordination and regulation of movements. Oxford: Pergamon Press.

    Google Scholar 

  • ∗Bernstein, N. A. (1996). On dexterity and its development. In M. L. Latash & M. T. Turvey (Eds.), Dexterity and its development (pp. 3–244). Mahwah, NJ:Erlbaum.

    Google Scholar 

  • Bird, J., Layzell, P., Webster, A., & Husbands, P. (2003). Towards epistemically autonomous robots: exploiting the potential of physical systems. Leonardo, 36, 109–114.

    Article  Google Scholar 

  • Cabrera, J. L. & Milton, J. G. (2004). Human stick balancing: Tuning Levy flights to improve balance control. Chaos, 14, 691–698.

    Article  PubMed  Google Scholar 

  • Calder, W. A. (1984). Size, function and life history. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cariani, P. (1992). Some epistemological implications of devices that construct their own sensors and effectors. In F. Varela and P. Bourgine (Eds.), Towards a practice of autonomous systems. Cambridge, MA:MIT Press.

    Google Scholar 

  • Chen, Y., Ding, M., & Kelso, J. A. S. (1997). Long memory processes (1/f α type) in human coordination. Physics Review Letters, 79, 4501–4504

    Article  CAS  Google Scholar 

  • ∗Chiel, H. J., & Beer, R. D. (1997). The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neuroscience, 20, 553–557.

    Article  CAS  Google Scholar 

  • Christini, D. J., In, V., Spano, M. L., Ditto, W. L., & Collins, J. (1997). Real-time experimental control of a system in its chaotic and nonchaotic regimes. Physical Review E, 56, R3749–R3752.

    Article  CAS  Google Scholar 

  • ∗Dickinson, M., Farley, C., Full, R. J., et al. (2000). How animals move: An integrative view. Science, 288, 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, M., & Zatsiorsky, V. M. (2001). Long-range correlations in human standing. Physics Letters A, 283, 124–128.

    Article  CAS  Google Scholar 

  • Dubois, D. M. (1998). Computing anticipatory systems with incursion and hyperincursion. American Institute of Physics Conference Proceedings (1st International Conference on Computing Anticipatory Systems), 437, 3–21.

    Google Scholar 

  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109, 545–572.

    Article  PubMed  Google Scholar 

  • Feldman, A. G. (1998). Spatial frames of reference for motor control. In M. Latash (Ed.), Progress in motor control (pp. 289–313). Champaign, IL: Human Kinetics.

    Google Scholar 

  • ∗Feldman A. G., & Levin M. F. (1995). The origin and use of positional frames of reference in motor control. Behavioral & Brain Sciences, 18, 723–806.

    Article  Google Scholar 

  • Fitch, H., & Turvey, M. T. (1978). On the control of activity: Some remarks from an ecological point of view. In D. Landers & R. W. Christina (Eds.), Psychology of motor behavior and sport (pp. 3–35). Urbana, IL: Human Kinetics.

    Google Scholar 

  • Forgacs, G. (1995). On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. Journal of Cell Science, 108, 2131–2143.

    PubMed  CAS  Google Scholar 

  • Fonseca, S., & Turvey, M. T. (2006). Biotensegrity perceptual hypothesis: A medium of haptic perception. Paper presented at the North America Meeting of the International Society for Ecological Psychology, Cincinnati, Ohio, June 22–24.

    Google Scholar 

  • Foo, P., Kelso, J. A. S., & de Guzman, G. C. (2000). Functional stabilization of unstable fixed points: Human pole balancing using time-to-balance information. Journal of Experimental Psychology: Human perception and Performance, 26, 1281–1297.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, C. A., & Turvey, M. T. (1978). Skill acquisition: An event approach with special reference to searching for the optimum of a function of several variables. In G. Stelmach (Ed.) Information processing in motor control and learning. NY: Academic Press.

    Google Scholar 

  • Full, R., & Koditscheck, D. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332.

    PubMed  CAS  Google Scholar 

  • Fulton, J. F. (1938). Physiology of the nervous system. New York: Oxford University Press.

    Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Erlbaum. (Originally published in 1979).

    Google Scholar 

  • Gleitman, H. (1999). Psychology (5th edition), Norton Publishing.

    Google Scholar 

  • Graziano, M., Taylor, C., Moore, T., & Cooke, D. (2002). The cortical control of movement revisited. Neuron, 36, 349–362.

    Article  PubMed  CAS  Google Scholar 

  • Greene, P. H. (1969). Seeking mathematical models for skilled actions. In D. Bootzin & H. C. Huffley (Eds.), Biomechanics (pp. 149–180). New York: Plenum Press.

    Google Scholar 

  • Greene, P. H. (1972). Problems of organization of motor systems. In R. Rosen & F. Snell (Eds.) Progress in theoretical biology (Vol 2). New York: Academic Press.

    Google Scholar 

  • Gurfinkel, V. S., Kots, Ya. M., Krinskiy, V. I., et al. (1971). Concerning tuning before movement. In I. M. Gelfand, V. S. Gurfinkel, S. V. Fomin & M. L. Tsetlin (Eds.), Models of the structural- functional organization of certain biological systems (pp. 361–372). Cambridge, MA: MIT Press.

    Google Scholar 

  • Haridas, C., Zehr, E. P., Misiaszek, J. E. (2005). Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking. Brain Research, 1062, 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Hausdorff, J. M., Purdon, P. L., Peng, C.–K., Ladin, Z., Wei, J. Y., & Goldberger, A. L. (1996). Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology, 80, 1448–1457.

    PubMed  CAS  Google Scholar 

  • ∗Hollerbach, J. M. (1990a). Fundamentals of motor behavior. In D. N. Osherson, S. M. Kosslyn, & J. M. Hollerbach et al. (Eds.), Visual cognition and action: An invitation to cognitive science, Volume 2 (pp. 153–182). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hollerbach, J. M. (1990b). Planning of arm movements. In Osherson et al. (Eds.), Visual cognition and action: An invitation to cognitive science, Volume 2 (pp. 183–211). Cambridge, MA: MIT Press.

    Google Scholar 

  • Holmes, P., Full, R. J., Koditscheck, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analyses, and challenges. Society of Industrial and Applied Mathematics, 48, 207–304.

    Google Scholar 

  • Hu, S., Chen, J., Butler, J. P., & Wang, N. (2005). Prestress mediates force propagation into the nucleus. Biochemical and Biophysical Research Communications, 329(2), 423–428.

    Article  PubMed  CAS  Google Scholar 

  • ∗Huijing, P. A. (2003). Muscular force transmission necessitates a multilevel integrative approach to the analysis of function of skeletal muscle. Exercise and Sport Science Review, 31, 167–175.

    Article  Google Scholar 

  • Huijing, P. A., & Baan, G. C. (2002). Myofascial force transmission: muscle relative position and length agonist and synergist muscle force. Journal of Applied Physiology, 94, 1092–1107.

    PubMed  Google Scholar 

  • Ingber, D. E. (2003a). Tensegrity I: Cell structure and hierarchical systems biology. Journal of Cell Science, 116, 1157–1173.

    Article  CAS  Google Scholar 

  • Ingber, D. E. (2003b). Tensegrity II: How structural networks influence cellular information processing networks. Journal of Cell Science, 116, 1397–1408.

    Article  CAS  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. New York: McGraw Hill.

    Google Scholar 

  • Kargo, W. J., & Rome, L. C. (2002). Functional morphology of proximal hindlimb muscles in the frog Rana pipiens. Journal of Experimental Biology, 205, 1987–2004.

    PubMed  Google Scholar 

  • ∗Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinions in Neurobiology, 9, 718–727.

    Article  CAS  Google Scholar 

  • Kelso, J. A. S. (1995). Dynamic patterns. Cambridge. MA: Bradford, MIT Press.

    Google Scholar 

  • Kirsch, D. (1991). Foundations of AI: The big issues. Artificial Intelligence, 47, 3–30.

    Article  Google Scholar 

  • Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 1–47). New York: North Holland.

    Google Scholar 

  • Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movements. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Latash, M. (1993). Control of human movement. Champaigne, IL: Human Kinetics.

    Google Scholar 

  • Liebovitch, L. S. (1998). Fractals and chaos simplified for the life sciences. New York: Oxford University Press.

    Google Scholar 

  • Linstedt, S. L., & Calder, W. A. (1981). Body size, physiological time and the longevity of homeothermic animals. Quarterly Review of Biology, 56, 1–16.

    Article  Google Scholar 

  • Loeb, G. E. (2001). Learning from the spinal cord. Journal of Neurophysiology, 533, 111–117.

    CAS  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.

    Google Scholar 

  • McBeath, M. K., Shaffer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569–573.

    Article  PubMed  CAS  Google Scholar 

  • McClamrock, R. (1995). Existential cognition: Computational minds in the world. Chicago: University of Chicago Press.

    Google Scholar 

  • Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–953.

    PubMed  Google Scholar 

  • ∗Michaels, C. F., & Zaal, F. T. J. M. (2002). Catching fly balls. In K. Davids, G. J. P. Savelsbergh, S. J. Bennett, and J. van der Kamp (Eds.), Interceptive actions in sport: Information and movement (pp. 172–183). London: Routledge.

    Google Scholar 

  • Newell, K. M., & Corcos, D. M. (1993). Issues in variability and motor control. In K. M. Newell & D. M. Corcos (Eds.), Variability and motor control (pp. 1–12). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Ostry, D. J., & Feldman, A. G. (2003). A critical evaluation of the force control hypothesis in motor control. Experimental Brain Research, 153, 275–288.

    Article  Google Scholar 

  • Pattee, H. H. (1996). The problem of observables in models of biological organization. In E. I. Kahlil and K. E. Boulding (Eds.), Evolution, order and complexity (pp. ). London: Routledge.

    Google Scholar 

  • Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A-S., McNamara, J. O., & Williams, S. M. (2001). Neuroscience. Sunderland MA; Sinauer Associates.

    Google Scholar 

  • Pressing, J. (1999). The referential dynamics of cognition and action. Psychological Review, 106, 714–747.

    Article  Google Scholar 

  • Rack, P. M., & Westbury, D. R. (1969). The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology, 204, 443–460).

    PubMed  CAS  Google Scholar 

  • Raibert, M. H., & Hodgins, j. K. (1993). Legged robots. In R. Beer, R. Ritzman, and T. McKenna (Eds.), Biological neural networks in invertebrate neuroethology and robotics (pp. 319–354). Boston, MA: Academic Press.

    Google Scholar 

  • Reed, E. (1985). An ecological approach to the evolution of behavior. In T. D. Johnston and A. T. Pietrewicz (Eds.), Issues in the ecological study of learning (pp. 357–383). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • ∗Riley, M., & Turvey, M. T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior, 34, 99–125.

    Article  PubMed  Google Scholar 

  • Rosen, R. (1978). Fundamentals of measurement and the representation of natural systems. New York: Elsevier.

    Google Scholar 

  • Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical and methodological foundations. NY: Pergamon Press.

    Google Scholar 

  • Rosen, R. (1991). Life itself. NY: Columbia University Press.

    Google Scholar 

  • Rosen, R. (2000). Essays on Life itself. NY: Columbia University Press.

    Google Scholar 

  • Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. J., Vaughan, J., & Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102, 28–67.

    Google Scholar 

  • Sanes, J., & Schieber, M. H. (2001). Orderly somatotopy in primary motor cortex: Does it exist? NeuroImage, 13, 968–974.

    Article  PubMed  CAS  Google Scholar 

  • Scott, S. H. (2003). The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates. Current Opinions in Neurobiology, 13, 671–677.

    Article  CAS  Google Scholar 

  • Sherrington, C. S. (1906). The integrative action of the nervous system. Oxford University Press, Oxford.

    Google Scholar 

  • Shinbrot, T., & Muzzio, F. J. (2001). Noise to order. Science, 410, 251–258.

    CAS  Google Scholar 

  • Sorensen, K. L., Hollands, M. A., & Patla, A. E. (2002). The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Experimental Brain Research, 143, 24–34.

    Article  CAS  Google Scholar 

  • Stark, J. (2000). Observing complexity, seeing simplicity. Philosophical Transactions of the Royal Society of London A, 358, 41–61.

    Article  Google Scholar 

  • Stepp, N., & Turvey, M. T. (2007). Weak anticipation, strong anticipation, and ecological theory. Paper presented at the XIV International Conference on Perception and Action, Yokohama, Japan, June 1–6.

    Google Scholar 

  • Strasmann, T., Wal, J. C. van der., Halata, Z., & Drukker, J. (1990). Functional topography and ultrastructure of periarticular mechanoreceptors in the lateral elbow region of the rat. Acta Anatomica, 138, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L. S. Young. (Eds.), Dynamical systems and turbulence (pp. 366–381). Berlin: Springer.

    Chapter  Google Scholar 

  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907–91.

    Article  PubMed  CAS  Google Scholar 

  • Traynelis, S. F., & Jaramillo, F. (1998). Getting the most out of noise in the central nervous system. Trends in Neuroscience, 21, 137–145.

    Article  CAS  Google Scholar 

  • ∗Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–953

    Article  PubMed  CAS  Google Scholar 

  • Turvey, M. T. (1992). Affordances and Prospective Control: An outline of the ontology. Ecological Psychology, 4, 173–187.

    Article  Google Scholar 

  • Turvey, M. T. (2004). Impredicativity, dynamics, and the perception-action divide. In V. K.Jirsa & J. A. S.Kelso (Eds.), Coordination Dynamics: Issues and Trends. Vol.1 Applied Complex Systems (pp. 1–20). New York: Springer Verlag.

    Google Scholar 

  • Turvey, M. T., & Carello, C. (1995). Dynamic touch. In W. Epstein & S. Rogers (Eds.), Handbook of perception and cognition, Vol. V. Perception of space and motion (pp. 401–490). San Diego: Academic Press.

    Google Scholar 

  • Turvey, M. T., Fitch, H. L., & Tuller, B. (1982). The Bernstein perspective, I: The problems of degrees of freedom and context-conditioned variability. In J. A. S. Kelso (Ed.), Understanding human motor control. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Turvey, M. T., Shaw, R. E., & Mace, W. (1978). Issues in the theory of action: Degrees of freedom, coordinative structures and coalitions. In J. Requin (Ed.), Attention and performance VII (pp. 557–595) Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wal, J. C. van der (1988). The organization of the substrate of proprioception in the elbow region of the rat. Doctoral Dissertation, University of Limburg, Masstricht, The Netherlands.

    Google Scholar 

  • Wal, J. C. van der, & Drukker, J. (1988). The occurrence of muscle spindles in relation to the architecture of the connective tissues in the lateral cubical region of the rat. In Hnik (Ed.), Mechanoreceptors: Development, structure, and function (pp. 345–346). New York: Plenum Press.

    Google Scholar 

  • Warren, W. H. (2006). Dynamics of perception and action. Psychological Review, 113, 358–389.

    Article  PubMed  Google Scholar 

  • Wendling, S., Canadas, P., & Chabrand, P. (2003). Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure. Computer Methods in Biomechanics and Biomedical Engineering, 6(1), 45–52.

    Article  PubMed  Google Scholar 

  • West, B. J. & Deering, B. (1995). The lure of modern science: Fractal thinking. Singapore: World Scientific.

    Book  Google Scholar 

  • West, B. J., & Griffin, L. (1998). Allometric control of human gait. Fractals, 6, 101–108.

    Article  Google Scholar 

  • West, B. J. (1999). Physiology, promiscuity, and prophecy at the millennium: A tale of tails. Singapore: World Scientific.

    Google Scholar 

  • Winfree, A. T. (1987). When time breaks down: The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.

    Article  Google Scholar 

  • Wolpert, D. M. & Gharamani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3 (Supplement), 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  • Zehr, E. P., Komiyama, T., & Stein, R. B. (1997). Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. Journal of Neurophysiology, 77, 3310–3325.

    Google Scholar 

  • ∗Zehr E. P., & Stein, R. B. (1999). What functions do reflexes serve during human locomotion? Progress in Neurobiology, 58, 185–205.

    Article  PubMed  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turvey, M.T., Fonseca, S. (2009). Nature of Motor Control: Perspectives and Issues. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_6

Download citation

Publish with us

Policies and ethics