Skip to main content

Constructing a Neurology of Anger

  • Chapter
  • First Online:

Abstract

In keeping with general neurological principles, earlier stage processing of verbal and visual triggers for anger must involve posterior and middle temporal cortices. As this processing typically evolves, it evokes memory of related events (e.g., past insults) and other relevant information from more anterior temporal areas. This mutual interaction shapes perceptions of anger-provoking challenges which activate cortical/subcortical circuits that prime and mediate angry/aggressive actions, e.g., cingulate motor areas 23 and 24 and medial/basal amygdala. The initial appraisals of anger in mid- and anterior temporal lobe are also transmitted anteriorly to ventromedial and orbitofrontal cortex. The latter integrates anger-provoking perceptions, e.g., combining the insulting verbal comment with the visual sneer, and weighs inhibitory factors like received or anticipated punishment, empathy with the offender and his relative social status. The combined result determines angry aggressive responses, if any, by disinhibiting the subcortical circuits activated by the temporal lobe. Interactions between ventromedial and orbitofrontal areas and/or feedback to the temporal lobe govern the escalation of aggression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerly, S. S. (1964). A case of paranatal bilateral frontal lobe defect observed for thirty years. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 192–218). New York: McGraw-Hill.

    Google Scholar 

  • Adams, D. B. (2006). Brain mechanisms of aggressive behavior: An updated review. Neuroscience and biobehavioral reviews, 30, 304–318.

    PubMed  Google Scholar 

  • Adamec, R. E. (1990). Does Kindling model anything clinically relevant. Biological Psychiatry, 27, 249–279.

    Google Scholar 

  • Adelmann, P. K., & Zajonc, R. B. (1989). Facial efference and the experience of emotion. Annual Review of Psychology, 40, 249–280.

    PubMed  Google Scholar 

  • Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177.

    PubMed  Google Scholar 

  • Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.

    PubMed  Google Scholar 

  • John Archer, J., Birring, S. S., & Wu, F. C. W. (1998). The association between testosterone and aggression among young men: Empirical findings and a meta-analysis. Aggressive Behavior, 24, 411–420.

    Google Scholar 

  • Archibald, S. J., Mateer, C. A., & Kerns, K. A. (2001). Utilization behavior: Clinical manifestations and neurological mechanisms. Neuropsychology Review, 11, 117–130.

    PubMed  Google Scholar 

  • Aristotle, XXII (1939). The "art" of rhetoric (J. H. Freese, Trans.). Cambridge: Harvard University Press.

    Google Scholar 

  • Bartolomeil, F., Guye, M., Wendling, F., Gavaret, M., Regis, J., & Chauvel, P. (2002). Fear, anger and compulsive behavior during seizure: Involvement of large scale fronto-temporal neural networks. Epileptic Disorders, 4, 235–241.

    PubMed  Google Scholar 

  • Bejjani, B. P., Houeto, J. L., Hariz, M., Yelnik, J., Mesnage, V., Bonnet, A. M., et al. (2002). Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology, 59, 1425–1427.

    PubMed  Google Scholar 

  • Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127, 1108–1126.

    PubMed  Google Scholar 

  • Blair, J. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55, 198–208.

    PubMed  Google Scholar 

  • Blake, P. Y., Pincus, J. H., & Buckner, C. (1995). Neurologic abnormalities in murderers. Neurology, 45, 1641–1647.

    PubMed  Google Scholar 

  • Blanchard, D. C., & Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Annual Review of Psychology, 39, 43–68.

    PubMed  Google Scholar 

  • Blanchard, D. C., & Blanchard, R. J. (2003). What can animal aggression research tell us about human aggression?. Hormones and Behavior, 44, 171–177.

    PubMed  Google Scholar 

  • Blanchard, D. C., Hynd, A. L., Minke, K. A., & Blanchard, R. J. (2001). Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of nonhuman mammals. Neuroscience and biobehavioral reviews, 25, 761–770.

    PubMed  Google Scholar 

  • Blumer, D. (2000). Dysphoric disorders and paroxysmal affects: Recognition and treatment of epilepsy-related psychiatric disorders. Harvard Review of Psychiatry, 8, 8–17.

    PubMed  Google Scholar 

  • Bond, A. B. (1989). Toward a resolution of the paradox of aggressive displays. II: Behavioral efference and the communication of intentions. Ethology, 81, pp. 235–249.

    Google Scholar 

  • Brandt, J., Seidman, L. J., & Kohl, D. (1985). Personality characteristics of epileptic patients: A controlled study of generalized and temporal lobe cases. Journal of Clinical and Experimental Neuropsychology, 7, 25–38.

    PubMed  Google Scholar 

  • Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the united states and the public health impact of delaying disease onset. American Journal of Public Health, 88, 1337–1342.

    PubMed  Google Scholar 

  • Bufkin, J. L., & Luttrell, V. E. (2005). Neuroimaging studies of aggressive and violent behavior. Trauma, Violence and Abuse, 6, 176–191.

    Google Scholar 

  • Bushman, B. J., & Anderson, C. A. (2001). Is it time to pull the plug on the hostile versus instrumental aggression dichotomy?. Psychological Review, 108, 273–279.

    PubMed  Google Scholar 

  • Cox, D. E., & Harrison, D. W. (2008). Models of anger: Contributions from psychophysiology, neuropsychology and the cognitive behavioral perspective. Brain Structure and Function, 212, 371–385.

    PubMed  Google Scholar 

  • Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., et al. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.

    PubMed  Google Scholar 

  • Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71–89.

    PubMed  Google Scholar 

  • Davidson, R. J., Shackman, A. J., Jeffrey, S., & Maxwell, J. S. (2004). Asymmetries in face and brain related to emotion. Trends in Cognitive Sciences, 8, 389–391.

    PubMed  Google Scholar 

  • Doughtery, D., Shin, L., Alpert, N., Pitman, R., Orr, S., Lasko, M., et al. (1999). Anger in healthy men: A PET study using script-driven imagery. Biological Psychiatry, 46, 466–472.

    Google Scholar 

  • Dougherty, D., Rauch, S. L., Deckersbach, T., Marci, C., Loh, R., Shin, L. M., et al. (2004). Ventromedial prefrontal cortex and amygdala dysfunction during an anger induction positron emission tomography study in patients with major depressive disorder with anger attacks. Archives of General Psychiatry, 61, 795–804.

    PubMed  Google Scholar 

  • Drexler, K., Schweitzer, J. B., Quinn, C. K., Gross, R., Ely, T. D., Muhammad, F., et al. (2000). Neural activity related to anger in cocaine-dependent men: A possible link to violence and relapse. American Journal of Addictions, 9, 331–339.

    Google Scholar 

  • Drummond, P. D., & Lance, J. W. (1987). Facial flushing and sweating mediated by the sympathetic nervous system. Brain, 110, 793–803.

    PubMed  Google Scholar 

  • Einon, D. F., & Potegal, M. (1994). Temper tantrums in young children. In M. Potegal & J. Knutson (Eds.), Dynamics of aggression: Biological and social processes in dyads and groups (pp. 157–194). Hillsdale, NJ: Erlbaum Assoc.

    Google Scholar 

  • Elliott, F. A. (1982). Neurological findings in adult minimal brain dysfunction and the dyscontrol syndrome. Journal of Nervous and Mental Disease, 170, 680–687.

    PubMed  Google Scholar 

  • Elliot, R., Dolan, R. J., & Firth, C. D. (2000). Dissociable functions in the medial and lateral orbito frontal cortex: Evidence from human neuro imaging studies. Cerebral cortex, 10, 308–317.

    Google Scholar 

  • Eluvathingal, T. J., Chugani, H. T., Behen, M. E., et al. (2006). Abnormal brain connectivity in children after early severe socioemotional deprivation: A diffusion tensor imaging study. Pediatrics, 117, 2093–2100.

    PubMed  Google Scholar 

  • Esslen, M., Pascual-Marqui, R. D., Hell, D., Kochi, K., & Lehmann, D. (2004). Brain areas and time course of emotional processing. NeuroImage, 21, 1189–1203.

    PubMed  Google Scholar 

  • Fenwick, P. (1989). The nature and management of aggression in epilepsy. Journal of Neuropsychiatry & Clinical Neurosciences, 1, 418–425.

    Google Scholar 

  • Fornazzari, L., Farcnik, K., Smith, I., Heasman, G. A., & Ichise, M. (1992). Violent visual hallucinations and aggression in frontal lobe dysfunction: Clinical manifestations of deep orbitofrontal foci. Journal of Neuropsychiatry and Clinical Neurosciences, 4, 42–44.

    PubMed  Google Scholar 

  • Foster, P. S., & Harrison, D. W. (2002). The relationship between magnitude of cerebral activation and intensity of emotional arousal. International Journal of Neuroscience, 112, 1463–1477.

    PubMed  Google Scholar 

  • Franzini, A., Carlo Marras, C., Ferroli, P., Bugiani, O., & Broggi, G. (2005). Stimulation of the posterior hypothalamus for medically intractable impulsive and violent behavior. Stereotactic and Functional Neurosurgery, 83, 63–66.

    PubMed  Google Scholar 

  • Fratelli, C. M., Liow, K., Korenman, L. M., et al. (2001). Cognitive deficits in children with hypothalamic hamartoma. Neurology, 57, 43–46, N=6/8 with screaming hit & kick.

    Google Scholar 

  • Fukui, H., Murai, T., Shinozaki, J., Aso, T., Fukuyama, H., Hayashi, T., et al. (2006). The neural basis of social tactics: An fMRI study. NeuroImage, 32, 913–920.

    PubMed  Google Scholar 

  • George, D. T., Rawlings, R. R., Williams, W. A., Phillips, M. J. ,, Fong, G., Kerich, M., et al. (2004). A select group of perpetrators of domestic violence: Evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography. Psychiatry Research: Neuroimaging, 130, 11–25.

    PubMed  Google Scholar 

  • Glosser, G., Zwil, A. S., Glosser, D. S., O‘Connor, M. J., & Sperling, M. R. (2000). Psychiatric aspects of temporal lobe epilepsy before and after anterior temporal lobectomy. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 53–58.

    PubMed  Google Scholar 

  • Golden, C. J., Michele, L., Jackson, M. L., Peterson-Rohne, A., & Gontkovsky, S. T. (1996). Neuropsychological correlates of violence and aggression: A review of the clinical literature. Aggression and Violent Behavior, 1, 3–25.

    Google Scholar 

  • Goldsmith, H. H. (1996). Studying temperament via construction of the Toddler Behavior Assessment Questionnaire. Child Development, 67, 218–235.

    PubMed  Google Scholar 

  • Goldsmith, H. H., Reilly, H. H., Lemery, K. S., Longley, S., & Prescott, A. (1994). Manual for the preschool laboratory temperament assessment battery (Lab-TAB). Madison, WI: University of Wisconsin, Unpublished manuscript.

    Google Scholar 

  • Goldstein, R. Z., Alia-Klein, N., Leskovjan, A. C., Fowler, J. S., Wang, G. J., Gur, R. C., et al. (2005). Anger and depression in cocaine addiction: Association with the orbitofrontal cortex. Psychiatry Research: Neuroimaging, 138(1), 13–22.

    PubMed  Google Scholar 

  • Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence and aggression: A report of the Vietnam Head Injury Study. Neurology, 46, 1231–1238.

    Google Scholar 

  • Grafman, J., Vance, S. C., Weingartner, H., et al. (1986). The effects of lateralized frontal lesions on mood regulation. Brain, 109, 1127–1148.

    PubMed  Google Scholar 

  • Greve, K. W., Sherwin, E., Stanford, M. W., Mathias, C., Love, J., & Ramzinski, P. (2001). Personality and neurocognitive correlates of impulsive aggression in long-term survivors of severe traumatic brain injury. Brain Injury, 15, 255–262.

    PubMed  Google Scholar 

  • Harmon-Jones, E., Sigelman, J. D., Bohlig, A., & Harmon-Jones, C. (2003). Anger, coping, and frontal cortical activity: The effect of coping potential on anger-induced left frontal activity. Cognition and Emotion, 17, 1–24.

    Google Scholar 

  • Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263–270.

    PubMed  Google Scholar 

  • Hirono, N., Mega, M., & Dinov, I (2000). Left fronto termporal hypoperfusion is associated with aggression in patients with dementia. Archives of Neurology, 57, 861–866.

    Google Scholar 

  • Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O‘Doherty, J., Bullock, P. R., et al. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712.

    PubMed  Google Scholar 

  • Hubble, G. (1997). Feminism and the battered woman: The limits of self-defense in the context of domestic violence. Current Issues in Criminal Justice, 9, 113–124.

    Google Scholar 

  • Hurliman, E., Nagode, J. C., & Pardo, J. V. (2005). Double dissociation of exteroceptive and interoceptive feedback systems in the orbital and ventromedial prefrontal cortex of humans. The Journal of neuroscience, 25, 4641–4648.

    PubMed  Google Scholar 

  • Hutchinson, R. R., Pierce, G. E., Emley, G. S., Proni, T. J., & Sauer, R. A. (1977). The laboratory measurement of human anger. Biobehavioral Reviews, 1, 241–259.

    Google Scholar 

  • Juhász, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia., 42, 991–1001.

    PubMed  Google Scholar 

  • Kanner, A. M. (2003). Depression in epilepsy: Prevalence, clinical semiology, pathogenic mechanisms, and treatment. Biological Psychiatry, 54, 388–398.

    PubMed  Google Scholar 

  • Kim, J. S. (2002). Agitation, aggression, and disinhibition syndromes after traumatic brain injury. NeuroRehabilitation, 17, 297–310.

    PubMed  Google Scholar 

  • Kim, J. S., Choi, S., Kwon, S. U., & Seo, Y. S. (2002). Inability to control anger or aggression after stroke. American Academy of Neurology, 58, 1106–1108.

    Google Scholar 

  • Krämer, U. M., Jansma, H., Tempelmann, C., & Münte, T. F. (2007). Tit-for-tat: The neural basis of reactive aggression. NeuroImage, 38, 203–211.

    PubMed  Google Scholar 

  • Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.

    PubMed  Google Scholar 

  • Kuppens, P., Van Mechelen, I., & Meulders, M. (2004). Every cloud has a silver lining: Interpersonal and individual difference determinants of anger-related behaviors. Personality and Social Psychology Bulletin, 30, 1550–1564.

    Google Scholar 

  • Kruk, M. R. (1991). Ethology and pharmacology of hypothalamic aggression in the rat. Neuroscience and biobehavioral reviews, 15, 527–538.

    PubMed  Google Scholar 

  • Lanctôt, K. L., Herrmann, N., Nadkarni, N. K., Leibovitch, F. S., Caldwell, C. B., & Black, S. E. (2004). Medial temporal hypoperfusion and aggression in Alzheimer disease. Archives of Neurology, 61, 1731–1737.

    PubMed  Google Scholar 

  • Lee, G. P., Bechara, A., Adolphs, R., Arena, J., Meador, K. J., Loring, D. W., & Smith, J. R. (1998). Clinical and physiological effects of bilateral amygdalotomy for introctable aggression. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 413–420.

    Google Scholar 

  • Lee, T. W., Josephs, O., Dolan, R. J., & Critchley, H. D. (2006). Imitating expressions: Emotion-specific neural substrates in facial mimicry. Social Cognitive and Affective Neuroscience, 1(2), 122–135.

    PubMed  Google Scholar 

  • Li, T.-Q., Mathews, V. P, Yang, W., Dunn, D., Kronenberger, W. (2005). Adolescents with disruptive behavior disorder investigated using an optimized MR diffusion tensor imaging protocol. Annals of the New York Academy of Sciences, 1064, 184–192.

    PubMed  Google Scholar 

  • Lieb, J. P., Dashieff, R. M., & Engel, J. (1991). Role of the frontal lobes in the propagation of mesial temporal seizures. Epilepsia., 32, 822–837.

    PubMed  Google Scholar 

  • Lotze, M., Veit, R., Anders, S., & Birbaumera, N. (2007). Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. NeuroImage, 34, 470–478.

    PubMed  Google Scholar 

  • Lyketsos, C. G., Lopez, O., Jones, B., et al. (2002). Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment. JAMA, 288, 1475–1483.

    PubMed  Google Scholar 

  • Manford, M., Fish, D. R., & Shorvon, S. D. (1996). An analysis of clinical seizure patterns and their localizing value in frontal and temporal epilepsies. Brain, 119, 17–40.

    PubMed  Google Scholar 

  • Marci, C. D., Glick, D. M., Loh, R., & Dougherty, D. D. (2007). Autonomic and prefrontal cortex responses to autobiographical recall of emotions. Cognitive, Affective, and Behavioral Neuroscience, 7(3), 243–250.

    Google Scholar 

  • Matsuura, M., Oana, Y., Kato, M., Kawana, A., Kan, R., Kubota, H., et al. (2003). A multicenter study on the prevalence of psychiatric disorders among new referrals for epilepsy in Japan. Epilepsia., 44, 107–l14.

    PubMed  Google Scholar 

  • Mazars, G. (1970). Criteria for identifying cingulate epilepsies. Epilepsia., 11, 41–47.

    PubMed  Google Scholar 

  • McCorkle, R. (1993). Living on the edge: Fear in a maximum-security prison. Journal of Offender Rehabilitation, 20 (1/2), 73–79.

    Google Scholar 

  • McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28, 285–305.

    Google Scholar 

  • Merk, W., Bram Orobio de Castro, B., Koops, W., & Matthys, W. (2005). The distinction between reactive and proactive aggression: Utility for theory, diagnosis and treatment?. European Journal of Developmental Psychology, 2, 197–220.

    Google Scholar 

  • Mick, E., Spencer, T., Wozniak, J., & Biederman, J. (2005). Heterogeneity of irritability in attention-deficit/hyperactivity disorder subjects with and without mood disorders. Biological Psychiatry, 58, 576–582.

    PubMed  Google Scholar 

  • Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306, 435–440.

    PubMed  Google Scholar 

  • Morecraft, R. J., & Van Hoesen, G. W. (1998). Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain research bulletin, 45, 209–232.

    PubMed  Google Scholar 

  • Mpakopoulou, M., Gatos, M. H., Brotis, A., Paterakis, K. N., & Fountas, K. N. (2008). Stereotactic amygdalotomy in the management of severe aggressive behavioral disorders. Neurosurgical Focus, 25, E6, 1–6.

    Google Scholar 

  • Muntner, P., Garrett, E., Klag, M. J., & Coresh, J. (2002). Stroke prevalence between 1973 and 1991 in the US population 25 to 74 years of age. Stroke, 33, 1209–1213.

    PubMed  Google Scholar 

  • Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, and Behavioral Neuroscience, 3, 207–233.

    Google Scholar 

  • Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F. (2005). Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review, 9, 184–211.

    PubMed  Google Scholar 

  • Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–219.

    PubMed  Google Scholar 

  • Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions (pp. 187–205). Oxford: Oxford University Press, Chapter 10 Nature red in and claw: The Neurobiological Sources of Rage and Anger.

    Google Scholar 

  • Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K., & Grafman, J. (2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. The American journal of psychiatry, 157, 1772–1781.

    PubMed  Google Scholar 

  • Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.

    PubMed  Google Scholar 

  • Potegal, M. (1979). The reinforcing value of several types of aggressive behavior: A review. Aggressive Behavior, 5, 353–373.

    Google Scholar 

  • Potegal, M. (1994). Aggressive arousal: The amygdala connection. In Potegal, M. & Knutson, J. (Ed.), The dynamics of aggression: Biological and social processes in dyads and groups (pp. 73–112). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Potegal, M. (2000). Some characteristics, correlates, and consequences of visible autonomic activity in the temper tantrums of young children. In R. G. Barr, B. Hopkins, & J. A. Green (Ed.), Crying as a sign, a symptom and a signal (pp. 121–136). London: Mac Keith Press.

    Google Scholar 

  • Potegal, M., Goldsmith, H., Chapman, R., Senulis, J., & Davidson, R. (1998, July) Tantrums, temperament and temporal lobes. Poster presented at the biennial meeting of the International Society for Research on Aggression Ramapo NJ.

    Google Scholar 

  • Potegal, M., Kosorok, M. R., & Davidson, R. J. (1996). The time course of angry behavior in the temper tantrums of young children. Annals of the New York Academy of Sciences, 794, 31–45.

    PubMed  Google Scholar 

  • Potegal, M., & Davidson, R. J. (2003). Temper tantrums in young children: 1) behavioral composition. Journal of Developmental and Behavioral Pediatrics, 24, 140–147.

    PubMed  Google Scholar 

  • Potegal, M., Kosorok, M. R., & Davidson, R. (2003). Temper tantrums in young children: 2) tantrum duration and temporal organization. Journal of Developmental and Behavioral Pediatrics, 24, 148–154.

    PubMed  Google Scholar 

  • Reid, J. P. (2006). St Thomas Aquinas Summa Theologiae: 1a2ae. 40–48 Vol. 21 Fear and Anger. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rheims, S., Ryvlin, P., Scherer, C., Minotti, L., Hoffmann, D., Guenot, M., et al. (2008). Analysis of clinical patterns and underlying epileptogenic zones of hypermotor seizures. Epilepsia, 49, 1–11.

    Google Scholar 

  • Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67, 206–221.

    Google Scholar 

  • Saint-Hilaire, J.-M., & Lee, M. A. (2000). Localizing and lateralizing value of epileptic symptoms in temporal lobe epilepsy. Canadian Journal of Neurological Sciences, 27(Suppl. 1), S1–S5.

    PubMed  Google Scholar 

  • Sano, K., & Mayanagi, Y. (1988). Posteromedial hypothalamotomy in treatment of violent aggressive behaviour. Acta Neurochirurgica Supplement, 44, 145–151.

    Google Scholar 

  • Schlaug, G., Antke, C., Holthausen, H., Arnold, S., Ebner, A., Tuxhor, I., et al. (1997). Ictal motor signs and interictal regional cerebral hypometabolism. Neurology, 49, 341–350.

    PubMed  Google Scholar 

  • Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., & Aharon-Peretz, J. (2003). Characterization of empathy deficits following prefrontal brain damage: The role of the right ventromedial prefrontal cortex. Journal of Cognitive Neuroscience, 15, 324–337.

    PubMed  Google Scholar 

  • Siegel, A. (2004). The neurobiology of aggression and rage . Boca Raton, FL: CRC Press.

    Google Scholar 

  • Siegel, A., Roeling, T. A. P., Gregga, T. R., & Kruk, M. R. (1999). Neuropharmacology of brain-stimulation-evoked aggression. Neuroscience and biobehavioral reviews, 23, 359–389.

    PubMed  Google Scholar 

  • Silver, I. M., & Yudofsky, S. C. (1987). Aggressive behavior in patients with neuropsychiatric disorders. Psychiatric Annals, 17, 367–370.

    Google Scholar 

  • Spencer, S. (1988). Corpus callosum section and other disconnection procedures for medically intractable epilepsy. Epilepsia., 29(Suppl 2), S85–S99.

    PubMed  Google Scholar 

  • Sprengelmeyer, R., Rausch, M., Eysel, U. T., & Przuntek, H. (1998). Neural structures associated with recognition of facial expressions of basic emotions. Proceedings: Biological Sciences, 265, 1927–1931.

    Google Scholar 

  • Stefanacci, L., & Amaral, D. (2002). Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 451, 301–323.

    PubMed  Google Scholar 

  • Steketee, J. D. (2003). Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Research Reviews, 41, 203–228.

    Google Scholar 

  • Stemmler, G. (1992). The vagueness of specificity: Models of peripheral physiological emotion specificity in emotion theories and their experimental discriminability. Journal of Psychophysiology, 6(1), 17–28.

    Google Scholar 

  • Stemmler, G. (1997). Selective activation of traits: Boundary conditions for the activation of anger. Personality and Individual Differences, 22, 213–233.

    Google Scholar 

  • Stemmler, G., Heldmann, M., Cornelia, A. P., & Scherer, T. (2001). Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology, 38, 275–291.

    PubMed  Google Scholar 

  • Tarkka, I. M., Karhu, J., Kuikka, J., Pääkkönen, A., Bergström, K., Partanen, J., et al. (2001). Altered frontal lobe function suggested by source analysis of event-related potentials in impulsive violent alcoholics. Alcohol and Alcoholism, 36, 323–328.

    PubMed  Google Scholar 

  • Tassinari, C. A., Tassi, L., Calandra-Buonaura, G., Stanzani-Maserati, M., Fini, N., Pizza, F., et al. (2005). Biting behavior, aggression, and seizures. Epilepsia., 46, 654–663.

    PubMed  Google Scholar 

  • Tateno, A., Jorge, R. E., Robert, G., & Robinson, R. G. (2003). Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 155–160.

    PubMed  Google Scholar 

  • Tebertz van Elst, L., Woermann, F. G., Lemieux, L., Thompson, P. J., & Trimble, M. R. (2000). Affective aggression in patients with temporal lobe epilepsy: A quantitative MRI study of the amygdala. Brain, 123, 234–243.

    Google Scholar 

  • Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic brain injury in the United States: A public health perspective. Journal of Head Trauma Rehabilitation, 14, 602–615.

    PubMed  Google Scholar 

  • Tiihonen, J., Kuikka, J. T., Bergström, K. A., et al. (1997). Single-photon emission tomography imaging of monoamine transporters in impulsive violent behaviour. European Journal of Nuclear Medicine, 24, 1253–1260.

    PubMed  Google Scholar 

  • Tonkonogy, J. M. (1991). Violence and temporal lobe lesion: Head CT and MRI data. The Journal of Neuropsychiatry and Clinical Neurosciences, 3, 189–196.

    PubMed  Google Scholar 

  • Tonkonogy, J. M., & Geller, J. L. (1992). Hypothalamic lesions and intermittent explosive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 4, 45–50.

    PubMed  Google Scholar 

  • Trimble, M. R., & Tebertz van Elst, L. (1999). On some clinical implications of the ventral striatum and the extended amygdala: Investigations of aggression. Annals of the New York Academy of Sciences, 877, 638–644.

    PubMed  Google Scholar 

  • Volkow, N. D., Tancredib, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., et al. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research: Neuroimaging, 61, 243–253.

    PubMed  Google Scholar 

  • Wang, L., Mathews, G. C., Whetsell, W. O., & Abou-Khalil, B. (2008). Hypermotor seizures in patients with temporal pole lesions. Epilepsy Research, 07, 005.

    Google Scholar 

  • Weinshenker, N. J., & Siegel, A. (2002). Bimodal classification of aggression: Affective defense and predatory attack. Aggression and Violent Behavior, 7, 237–250.

    Google Scholar 

  • Wieser, H. G., Meles, H. P., Bernoulli, C., & Seigfried, J. (1980). Clinical and chronotopographic psychomotor seizure patterns. Acta Neurochirurgica Supplement, 30, 103–112.

    Google Scholar 

  • Weissenberger, A., Dell, M., Liow, K., et al. (2001). Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 40(6), 696–703, N=12 83% ODD, 89% aggr.

    PubMed  Google Scholar 

  • Whitman, S., King, L., & Cohen, R. (1986). Epilepsy and violence: A scientific and social analysis psychopathology in epilepsy: Social dimensions. New York: Oxford University Press.

    Google Scholar 

  • Woermann, F. G., van Elst, L. T., Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., et al. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: An objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 162–169.

    PubMed  Google Scholar 

  • Yamanouchi, H., Noda, Y., Sugai, K., Takashima, S., & Kurokawa, T. (1991). Two cases of ictal automatisms of frontal lobe origin. No to Hattatsu (Brain and Development), 23, 492–496.

    Google Scholar 

  • Yankovsky, A. E., Veilleux, M., Dubeau, F., & Andermann., F. (2005). Post-ictal rage and aggression: A video-EEG study. Epileptic Disorders, 7, 143–147.

    PubMed  Google Scholar 

Download references

Acknowledgments

Collection of the EEG data was supported by a grant to M. Potegal from the Harry Frank Guggenheim Foundation and by National Research Service Awards to M. Potegal from the National Institute for Neurological Disorders and Stroke (F33 NS09638) and the National Institute of Child Health and Human Development (F33 HD08208). At that time, the first author was a Fellow in the laboratory of Richard J. Davidson, where work was supported in part by an NIMH Center for Behavioral Sciences Research Grant (P50-MH52354) to the Wisconsin Center for Affective Neuroscience (R.J. Davidson, Director) and by an NIMH Research Scientist Award (KO5-MH00875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Potegal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potegal, M., Stemmler, G. (2010). Constructing a Neurology of Anger. In: Potegal, M., Stemmler, G., Spielberger, C. (eds) International Handbook of Anger. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89676-2_4

Download citation

Publish with us

Policies and ethics