Skip to main content

Microbial Distributions And Their Potential Controlling Factors In Terrestrial Subsurface Environments

  • Chapter
The Spatial Distribution of Microbes in the Environment

Terrestrial subsurface environments (below the plow layer) contain an enormous amount of the earth’s biomass, yet are relatively undersampled compared to topsoil, aquatic, and marine environments. Depth emerges as a primary axis for relating distributions of microorganisms and the factors controlling their distribution. There is generally a sharp drop in microbial biomass, diversity, and activity as organic-rich topsoils deepen to mineral-dominated subsoils. Progressively deeper samples from the vadose zone to the capillary fringe and into saturated zones often reveal increases in biomass and changes in dominant microbial populations. Biomass appears to slowly decline with depth, and cell viability is limited by temperature between 4.5 and 6 km. In many subsurface environments, spatial distributions of microorganisms are extremely variable, frequently defying prediction. In a few highly structured saturated environments, such as confined or contaminated shallow aquifers, predominant terminal electron accepting activities are arranged in a spatially ordered manner that is consistent with selected geochemical measurements. Sampling issues specific to subsurface environments still require substantial added effort and expense to achieve a reasonable sample density in comparison to most other environments. Technological advances in microbial assay methodologies are easing some of the methodological boundaries that are often exceeded by subsurface samples. Keywords: aquifer, distribution, microorganism, spatial, subsurface, vadose

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, N. R., J. A. Robinson, and J. M. Suflita, 1994, Spatial variability in biodegradation rates as evidenced by methane production from an aquifer, Appl. Environ. Microbiol. 60:3632-3639.

    PubMed  CAS  Google Scholar 

  • Albrechtsen, H. -J., 1994, Distribution of bacteria, estimated by a viable count method, and heterotrophic activity in different size fractions of aquifer sediment, Geomicrobiol. J. 12:253-264.

    Article  Google Scholar 

  • Albrechtsen, H. -J., and A. Winding, 1992, Microbial biomass and activity in subsurface sedi-ments from Vejen, Denmark, Microb. Ecol. 23:303-317.

    Article  Google Scholar 

  • Balkwill, D. L., 1989, Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina, Geomicrobiol. J. 7:33-52.

    Article  Google Scholar 

  • Balkwill, D. L., and W. C. Ghiorse, 1985, Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma, Appl. Environ. Microbiol. 50:580-588.

    PubMed  CAS  Google Scholar 

  • Balkwill, D. L., J. K. Fredrickson, and J. M. Thomas, 1989, Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments, Appl. Environ. Microbiol. 55:1058-1065.

    PubMed  CAS  Google Scholar 

  • Balkwill, D. L., E. M. Murphy, D. M. Fair, D. B. Ringelberg, and D. C. White, 1998, Microbial communities in high and low recharge environments: implications for microbial transport in the vadose zone, Microb. Ecol. 35:156-171.

    Article  PubMed  CAS  Google Scholar 

  • Barbaro, S. E., H. -J. Albrechtsen, B. K. Jensen, C. I. Mayfield, and J. F. Barker, 1994, Relationships between aquifer properties and microbial populations in the Borden aquifer, Geomicrobiol. J. 12:203-219.

    Article  Google Scholar 

  • Bastin, E. S., 1926, The presence of sulphate-reducing bacteria in oil-field waters, Science 63:21-24.

    Article  PubMed  CAS  Google Scholar 

  • Bekins, B. A., E. M. Godsy, and E. Warren, 1999, Distribution of microbial physiologic types in an aquifer contaminated by crude oil, Microb. Ecol. 37:263-275.

    Article  PubMed  Google Scholar 

  • Beloin, R. M., J. L. Sinclair, and W. C. Ghiorse, 1988, Distribution and activity of microorganisms in subsurface sediments of a pristine study site in Oklahoma, Microb. Ecol. 16:85-97.

    Article  CAS  Google Scholar 

  • Blume, E., M. Bischoff, J. M. Reichert, T. Moorman, A. Konopka, and R. F. Turco, Jr., 2002, Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season, Appl. Soil Ecol. 20:171-181.

    Article  Google Scholar 

  • Boivin-Jahns, V., R. Ruimy, A. Bianchi, S. Daumas, and R. Christen, 1996, Bacterial diversity in a deep-subsurface clay environment, Appl. Environ. Microbiol. 62:3405-3412.

    PubMed  CAS  Google Scholar 

  • Bone, T. L., and D. L. Balkwill, 1988, Morphological and cultural comparison of micro-organisms in surface soil and subsurface sediments at a pristine study site in Oklahoma, Microb. Ecol. 16:49-64.

    Article  Google Scholar 

  • Boone, D., Y. Liu, Z. Zhao, D. Balkwill, G. Drake, T. Stevens, and H. Aldrich, 1995, Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface, Int. J. Syst. Bacteriol. 45:441-448.

    Article  PubMed  CAS  Google Scholar 

  • Brockman, F. J., and C. J. Murray, 1997, Microbiological heterogeneity in the terrestrial sub-surface and approaches for its description, in: The Microbiology of the Terrestrial Deep Subsurface, P. S. Amy and D. L. Haldeman, eds., CRC Press, Boca Raton, pp. 75-102.

    Google Scholar 

  • Brockman, F. J., and C. J. Murray, 1997, Subsurface microbiological heterogeneity: current knowledge, descriptive approaches and applications, FEMS Microbiol. Rev. 20:231-247.

    Article  CAS  Google Scholar 

  • Cano, R. J., and M. K. Borucki, 1995, Revival and identification of bacterial spores in 25- to 40-million-year-Old Dominican amber, Science 268:1060-1063.

    Article  PubMed  CAS  Google Scholar 

  • Chapelle, F. H., and D. R. Lovley, 1990, Rates of microbial metabolism in deep coastal plain aquifers, Appl. Environ. Microbiol. 56:1865-1874.

    PubMed  CAS  Google Scholar 

  • Chapelle, F. H., J. Zelibor, D. J. Grimes, and L. L. Knobel, 1987, Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater, Water Resour. Res. 23:1625-1632.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., K. O’Neill, P. M. Bradley, B. A. Methe, S. A. Ciufo, L. L. Knobel, and D. R. Lovley, 2002, A hydrogen-based subsurface microbial community dominated by metha-nogens, Nature 415:312-315.

    Article  PubMed  Google Scholar 

  • Colwell, F. S., 1989, Microbiological comparison of surface soil and unsaturated subsurface soil from a semiarid high desert, Appl. Environ. Microbiol. 55:2420-2423.

    PubMed  CAS  Google Scholar 

  • Colwell, F. S., T. C. Onstott, M. E. Delwiche, D. Chandler, J. K. Fredrickson, Q. -J. Yao, J. P. McKinley, D. R. Boone, R. P. Griffiths, T. J. Phelps, D. B. Ringelberg, D. C. White, L. Lafreniere, D. L. Balkwill, R. M. Lehman, J. Konisky, and P. E. Long, 1997, Microorganisms from deep, high-temperature sandstones: constraints on microbial colonization, FEMS Microbiol. Rev. 20:425-435.

    Article  CAS  Google Scholar 

  • Davis, J. P., 1967, Petroleum Microbiology, Elsevier, New York.

    Google Scholar 

  • Dodds, W. K., M. K. Banks, C. S. Clenan, C. W. Rice, D. Sotomayor, E. A. Strauss, and W. Yu, 1996, Biological properties of soil and subsurface sediments under abandoned pasture and cropland, Soil Biol. Biochem. 28:837-846.

    Article  CAS  Google Scholar 

  • Edwards, K. J., M. O. Schrenk, R. J. Hamers, and J. F. Banfield, 1998, Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment, Am. Mineralogist. 83:1444-1453.

    CAS  Google Scholar 

  • Ekelund, F., R. Ronn, and S. Christensen, 2001, Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites, Soil Biol. Biochem. 33:475-481.

    Article  CAS  Google Scholar 

  • Federle, T., D. Dobbins, J. Thornton-Manning, and D. Jones, 1986, Microbial biomass, activity, and community structure in subsurface soils, Ground Water 24:365-374.

    Article  CAS  Google Scholar 

  • Fierer, N., J. P. Schimel, and P. A. Holden, 2003, Variations in microbial community composition through two soil depth profiles, Soil Biol. Biochem. 35:167-176.

    Article  CAS  Google Scholar 

  • Fliermans, C., and D. Balkwill, 1989, Microbial life in deep terrestrial subsurfaces, BioScience 39:370-376.

    Article  Google Scholar 

  • Francis, A. J., J. M. Slater, and C. J. Dodge, 1989, Denitrification in deep subsurface sediments, Geomicrobiology 7:103-116.

    Article  CAS  Google Scholar 

  • Franklin, R. B., D. R. Taylor, and A. L. Mills, 2000, The distribution of microbial communities in anaerobic and aerobic zones of a shallow coastal plain aquifer, Microb. Ecol. 38:377-386.

    Google Scholar 

  • Fredrickson, J. K., R. J. Hicks, S. W. Li, and F. J. Brockman, 1988, Plasmid incidence from deep subsurface sediments, Appl. Environ. Microbiol. 54:2916-2923.

    PubMed  CAS  Google Scholar 

  • Fredrickson, J. K., T. R. Garland, R. J. Hicks, J. M. Thomas, S. W. Li, and K. M. McFadden, 1989, Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties, Geomicrobiology 7:53-66.

    Article  Google Scholar 

  • Fredrickson, J. K., D. L. Balkwill, J. M. Zachara, S. W. Li, F. J. Brockman, and M. A. Simmons, 1991, Physiological diversity and distributions of heterotrophic bacteria in deep Cretaceous sediments of the Atlantic coastal plain, Appl. Environ. Microbiol. 57:402-411.

    PubMed  CAS  Google Scholar 

  • Fredrickson, J. K., F. J. Brockman, B. N. Bjornstad, P. E. Long, S. W. Li, J. P. McKinley, J. V. Wright, J. L. Conca, T. L. Kieft, and D. L. Balkwill, 1993, Microbiological characteris-tics of pristine and contaminated deep vadose sediments from an arid region, Geomicrobiol. J. 11:95-107.

    Article  Google Scholar 

  • Fredrickson, J. K., J. P. McKinley, S. A. Nierzwicki-Bauer, D. C. White, D. B. Ringelberg, S. A. Rawson, S. Li, F. J. Brockman, and B. N. Bjornstad, 1995, Microbial community structure and biogeochemistry of Miocene subsurface sediments: implications for longterm microbial survival, Molec. Ecol. 4:619-626.

    Article  CAS  Google Scholar 

  • Fredrickson, J. K., J. P. McKinley, B. N. Bjornstad, P. E. Long, D. B. Ringelberg, D. C. White, L. R. Krumholz, J. M. Suflita, F. S. Colwell, R. M. Lehman, T. J. Phelps, and T. C. Onstott, 1997, Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, northwestern New Mexico., Geomicrobiol. J. 14:183-202.

    Article  Google Scholar 

  • Fritze, H., J. Pietikainen, and T. Pennanen, 2000, Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest, Eur. J. Soil Sci. 51:565-573.

    CAS  Google Scholar 

  • Ghiorse, W. C., and J. T. Wilson, 1988, Microbial ecology of the terrestrial subsurface, Adv. Appl. Microbiol. 33:107-173.

    Article  PubMed  CAS  Google Scholar 

  • Godsy, E. M., D. F. Goerlitz, and D. Grbic Galic, 1992, Methanogenic biodegradation of creosote contaminants in natural and simulated groundwater ecosystems, Ground Water 30:232-242.

    Article  CAS  Google Scholar 

  • Gold, T., 1992, The deep, hot biosphere, Proc. Natl. Acad. Sci. USA 89:6045-6049.

    Article  PubMed  CAS  Google Scholar 

  • Haldeman, D. L., and P. S. Amy, 1993, Bacterial heterogeneity in deep subsurface tunnels at Rainier Mesa, Nevada Test Site, Microb. Ecol. 25:183-194.

    Article  Google Scholar 

  • Haldeman, D. L., P. S. Amy, D. B. Ringelberg, and D. C. White, 1993, Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface, Microb. Ecol. 26:145-159.

    Article  Google Scholar 

  • Harvey, R. W., R. L. Smith, and L. George, 1984, Effect of organic contamination upon micro-bial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer, Appl. Environ. Microbiol. 48:1197-1202.

    PubMed  CAS  Google Scholar 

  • Haveman, S. A., and K. Pedersen, 2002, Distribution of culturable microorganisms in Fennoscandian Shield groundwater, FEMS Microbiol. Ecol. 39:129-137.

    Article  PubMed  CAS  Google Scholar 

  • Haveman, S. A., K. Pedersen, and P. Ruotsalainen, 1999, Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland, Geomicrobiology 16:277-294.

    Article  Google Scholar 

  • Hersman, L. E., 1997, Subsurface microbiology: effects on the transport of radioactive waste in the vadose zone, in: The Microbiology of the Terrestrial Deep Subsurface, P. S. Amy and D. L. Haldeman, eds., CRC Press, Boca Raton, pp. 299-324.

    Google Scholar 

  • Hicks, R. J., and J. K. Fredrickson, 1989, Aerobic metabolic potential of microbial populations indigenous to deep subsurface environments, Geomicrobiology 7:67-77.

    Article  Google Scholar 

  • Hunt, C. B., 1986, Surficial Deposits of the United States. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Jimenez, L., 1990, Molecular analysis of deep-subsurface bacteria, Appl. Environ. Microbiol. 56:2108-2113.

    PubMed  CAS  Google Scholar 

  • Jones, R. E., R. E. Beeman, and J. M. Suflita, 1989, Anaerobic metabolic processes in the deep terrestrial subsurface, Geomicrobiology 7:117-130.

    Article  CAS  Google Scholar 

  • Keswick, B. H., 1984, Sources of groundwater pollution, in: Groundwater Pollution Microbiology, G. Bitton and C. P. Gerba, eds., Wiley-Interscience, New York, pp. 39-64.

    Google Scholar 

  • Kieft, T. L., P. S. Amy, F. J. Brockman, J. K. Fredrickson, B. N. Bjornstad, and L. L. Rosacker, 1993, Microbial abundance and activities in relation to water potential in the vadose zones of arid and semiarid site, Microb. Ecol. 26:59-78.

    Article  Google Scholar 

  • Kieft, T. L., J. K. Fredrickson, J. P. McKinley, B. N. Bjornstad, S. A. Rawson, T. J. Phelps, F. J. Brockman, and S. M. Pfiffner, 1995, Microbiological comparisons within and across contiguous lacustrine, paleosol, and fluvial subsurface sediments, Appl. Environ. Microbiol. 61:749-757.

    PubMed  CAS  Google Scholar 

  • Kieft, T. L., E. M. Murphy, D. L. Haldeman, P. S. Amy, B. N. Bjornstad, E. V. McDonald, D. B. Ringelberg, D. C. White, J. Stair, R. P. Griffiths, T. S. Gsell, W. E. Holben, and D. R. Boone, 1998, Microbial transport, survival, and succession in a sequence of buried sediments, Microb. Ecol. 36:336-348.

    Article  PubMed  CAS  Google Scholar 

  • Kolbel-Boelke, J., E. -M. Anders, and A. Nehrkorn, 1988, Microbial communities in the saturated groundwater environment II: diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities, Microb. Ecol. 16:31-48.

    Article  Google Scholar 

  • Krumholz, L. R., J. P. McKinley, G. A. Ulrich, and J. M. Suflita, 1997, Confined subsurface microbial communities in Cretaceous rock, Nature 386:64-66.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., S. H. Harris, S. T. Tay, and J. M. Suflita, 1999, Characterization of two sub-surface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles, Appl. Environ. Microbiol. 65:2300-6.

    PubMed  CAS  Google Scholar 

  • Lawrence, J. R., Y. T. J. Kwong, and G. D. W. Swerhone, 1997, Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferroxidans, Can. J. Microbiol. 43:178-188.

    Article  CAS  Google Scholar 

  • Lawrence, J. R., M. J. Hendry, L. I. Wassenaar, J. J. Germida, G. M. Wolfaardt, N. Fortin, and C. W. Greer, 2000, Distribution and biogeochemical importance of bacterial populations in a thick clay-rich aquitard system, Microb. Ecol. 40:273-291.

    PubMed  CAS  Google Scholar 

  • Lehman, R. M., F. S. Colwell, R. Smith, M. E. Delwiche, S. P. O’Connell, J. K. Fredrickson, F. J. Brockman, A. -L. Reysenbach, T. L. Kieft, T. J. Phelps, D. B. Ringelberg, and D. C. White, 1999, Longitudinal and vertical variations in the microbial ecology of a fractured basalt aquifer with respect to a contaminant plum. Presented at the International Symposium on Subsurface Microbiology - August 1999, Vail, CO.

    Google Scholar 

  • Lehman, R. M., F. F. Roberto, D. Earley, D. F. Bruhn, S. E. Brink, S. P. O’Connell, M. E. Delwiche, and F. S. Colwell, 2001, Attached and unattached bacterial communities in a 120-meter corehole in an acidic, crystalline rock aquifer, Appl. Environ. Microbiol. 67:2095-2106.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, R. M., S. P. O’Connell, A. Banta, J. K. Fredrickson, A. -L. Reysenbach, T. L. Kieft, and F. S. Colwell, 2004, Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ, Geomicrobiol. J. 21:169-182.

    Article  CAS  Google Scholar 

  • Lovley, D. R., 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev. 55:259-287.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and F. H. Chapelle, 1995, Deep subsurface microbial processes, Rev. Geophys. 33:365-381.

    Article  Google Scholar 

  • Ludvigsen, L., H. Albrechtsen, D. B. Ringelberg, F. Ekelund, and T. H. Christensen, 1999, Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark), Microb. Ecol. 37:197-207.

    Article  PubMed  Google Scholar 

  • McMahon, P. B., and F. H. Chapelle, 1991, Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry, Nature 349:233-235.

    Article  CAS  Google Scholar 

  • McKinley, J. P., T. O. Stevens, J. K. Fredrickson, J. M. Zachara, F. S. Colwell, K. B. Wagnon, S. C. Smith, S. A. Rawson, and B. N. Bjornstad, 1997, Biogeochemistry of anaerobic lacustrine and paleosol sediments within an aerobic unconfined aquifer, Geomicrobiol. J. 14:23-39.

    Article  CAS  Google Scholar 

  • Madigan, M. T., J. M. Martinko, and J. Parker, 1997, Brock Biology of Microorganisms, 8th Edition. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Martino, D. P., E. L. Grossman, G. A. Ulrich, K. C. Burger, J. L. Schlichenmeyer, J. M. Suflita, and J. W. Ammerman, 1998, Microbial abundance and activity in a low-conductivity aquifer system in East-Central Texas, Microb. Ecol. 35:224-234.

    Article  PubMed  CAS  Google Scholar 

  • Mouser, P. J., D. M. Rizzo, W. F. M. Roling, and B. M. van Breukelen, 2005, A multivariate statistical approach to spatial representation of groundwater contamination using hydrochemistry and microbial community profiles, Environ. Sci. Technol. 39:7551-7559.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, E. M., J. A. Schramke, J. K. Fredrickson, H. W. Bledsoe, A. J. Francis, D. S. Sklarew, and J. C. Linehan, 1992, The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf aquifer, Water Resour. Res. 28:723-740.

    Article  CAS  Google Scholar 

  • Musslewhite, C. L., M. J. McInerney, H. Dong, T. C. Onstott, M. Green-Blum, D. Swift, S. J. MacNaughton, D. C. White, C. J. Murray, and Y. -J. Chien, 2003, The factors controlling microbial distribution and activity in the shallow subsurface, Geomicrobiol. J. 20:245-261.

    Article  CAS  Google Scholar 

  • Onstott, T. C., T. J. Phelps, F. S. Colwell, D. B. Ringelberg, D. C. White, D. R. Boone, J. P. McKinley, T. O. Stevens, P. E. Long, D. L. Balkwill, W. T. Griffin, and T. L. Kieft, 1998, Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia, Geomicrobiology 15:353-385

    Google Scholar 

  • Onstott, T. C., T. J. Phelps, T. Kieft, F. S. Colwell, D. L. Balkwill, J. K. Fredrickson, and F. J. Brockman, 1999, A global perspective on the microbial abundance and activity in the deep subsurface, in: Enigmatic Microorganisms and Life in Extreme Environments, J. Seckbach, ed., Kluwer Academic, Dordrecht, The Netherlands, pp. 489-500.

    Google Scholar 

  • Palumbo, A. V., J. C. Schryver, M. W. Fields, C. E. Bagwell, J. -Z. Zhou, T. Yan, X. Liu, and C. C. Brandt, 2004, Coupling of functional gene diversity and geochemical data from environmental samples, Appl. Environ. Microbiol. 70:6525-6534.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, K., 1993, The deep subterranean biosphere, Earth Sci. Rev. 34:243-260.

    Article  CAS  Google Scholar 

  • Pedersen, K., 1997, Microbial life in deep granitic rock, FEMS Microbiol. Rev. 20:399-414.

    Article  CAS  Google Scholar 

  • Pedersen, K., 2000, Exploration of deep intraterrestrial microbial life: current perspectives, FEMS Microbiol. Lett. 185:9-16.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, K., and S. Ekendahl, 1990, Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden, Microb. Ecol. 20:37-52.

    Article  Google Scholar 

  • Pedersen, K., J. Arlinger, L. Hallbeck, and C. Pettersson, 1996, Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing, Molec. Ecol. 5:427-436.

    CAS  Google Scholar 

  • Phelps, T. J., E. G. Raione, D. C. White, and C. B. Fliermans, 1989, Microbial activities in deep subsurface environments, Geomicrobiology 7:79-91.

    Article  Google Scholar 

  • Phelps, T., E. Murphy, S. Pfiffner, and D. White, 1994, Comparison between geochemical and biological estimates of subsurface microbial activities, Microb. Ecol. 28:335-349.

    Article  CAS  Google Scholar 

  • Phelps, T. J., S. M. Pfiffner, K. A. Sargent, and D. C. White, 1994, Factors influencing the abundance and metabolic capacities of microorganisms in eastern coastal plain sediments, Microb. Ecol. 28:351-364.

    Article  CAS  Google Scholar 

  • Potts, M., 1994, Dessication tolerance of prokaryotes, Microbiol. Rev. 58:755-805.

    PubMed  CAS  Google Scholar 

  • Richter, D. D., and D. Markewitz, 1995, How deep is soil? Bioscience 45:600-614.

    Article  Google Scholar 

  • Roling, W. F. M., B. M. van Breukelen, M. Braster, B. Lin, and H. W. van Verseveld, 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer, Appl. Environ. Microbiol. 67:4619-4629.

    Article  PubMed  CAS  Google Scholar 

  • Russell, C. E., R. Jacobson, D. L. Haldeman, and P. S. Amy, 1994, Heterogeneity of deep subsurface microorganisms and correlations to hydrogeological and geochemical para-meters, Geomicrobiol. J. 12:37-51.

    Article  Google Scholar 

  • Shi, T., R. H. Reeves, D. A. Gilichinsky, and E. I. Friedmann, 1997, Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing, Microb. Ecol. 33:169-179.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, J. L., and W. C. Ghiorse, 1989, Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments, Geomicrobiology 7:15-31.

    Article  Google Scholar 

  • Sinclair, J. L., S. J. Rantke, J. E. Denne, L. R. Hathaway, and W. C. Ghiorse, 1990, Survey of microbial populations in buried-valley aquifer sediments from northeastern Kansas, Ground Water 28:369.

    Article  Google Scholar 

  • Smith, R. L., R. W. Harvey, and D. R. LeBlanc, 1991, Importance of closely spaced vertical sampling delineating chemical and microbiological gradients in ground water studies, J. Contam. Hydrol. 7:285-300.

    Article  CAS  Google Scholar 

  • Soil Survey Staff, 1975, Soil taxonomy. U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • Stevens, T. O., and B. S. Holbert, 1995, Variability and density dependence of bacteria in terrestrial subsurface samples: implications for enumeration, J. Microbiol. Methods 21:283-292.

    Article  Google Scholar 

  • Stevens, T. O., and J. P. McKinley, 1995, Lithotrophic microbial ecosystems in deep basalt aquifers, Science 270:450-454.

    Article  CAS  Google Scholar 

  • Szewzky, U., R. Szewzky, and T. -A. Stenstrom, 1994, Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden, Proc. Natl. Acad. Sci. USA 91:1810-1813.

    Article  Google Scholar 

  • Takai, K., M. R. Mormile, J. P. McKinley, F. J. Brockman, W. E. Holben, W. P. Kovacik, and J. K. Fredrickson, 2003, Shifts in Archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock, Environ. Microbiol. 5:309-320.

    Article  PubMed  CAS  Google Scholar 

  • Tate, R. L., 1979, Microbial activity in organic soils as affected by soil depth and crop, Appl. Environ. Microbiol. 37:1085-1090.

    PubMed  CAS  Google Scholar 

  • Taunton, A. W., S. A. Welch, and J. F. Banfield, 2000, Microbial controls on phosphate weathering and lanthanide distributions during granite weathering and soil formation, Chem. Geol. 169:371-382.

    Article  CAS  Google Scholar 

  • Taylor, J. P., B. Wilson, M. S. Mills, and R. G. Burns, 2002, Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques, Soil Biol. Biochem. 34:387-401.

    Article  CAS  Google Scholar 

  • Ulrich, G. A., D. Martino, K. Burger, J. Routh, E. L. Grossman, J. W. Ammerman, and J. M. Suflita, 1998, Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity, Microb. Ecol. 36:141-151.

    Article  PubMed  CAS  Google Scholar 

  • Vreeland, R. H., W. D. Rosenzweig, and D. W. Powers, 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal, Nature 407:897-900.

    Article  PubMed  CAS  Google Scholar 

  • Walvoord, M. A., P. Pegram, F. M. Phillips, M. Person, T. L. Kieft, J. K. Fredrickson, J. P. McKinley, and J. B. Swenson, 1999, Groundwater flow and geochemistry in the southeastern San Juan Basin: implications for microbial transport and activity, Water Resour. Res. 35:1409-1424.

    Article  CAS  Google Scholar 

  • Whitman, W. B., D. C. Coleman, and W. J. Wiebe, 1998, Prokaryotes: the unseen majority, Proc. Natl. Acad. Sci. USA 95:6578-6583.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. T., J. F. McNabb, D. L. Balkwill, and W. C. Ghiorse, 1983, Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer, Ground Water 21:134-142.

    Article  Google Scholar 

  • Winograd, J. I., and F. N. Robertson, 1982, Deep oxygenated groundwater: anomaly or common occurence? Science 216:1227-1230.

    Article  PubMed  CAS  Google Scholar 

  • Wood, B. D., C. K. Keller, and D. L. Johnstone, 1993, In situ measurement of microbial activity and controls on microbial CO2 production in the unsaturated zone, Water Resour. Res. 29:647-659.

    Article  CAS  Google Scholar 

  • Zhang, C., R. M. Lehman, S. M. Pfiffner, S. P. Scarborough, A. V. Palumbo, T. J. Phelps, J. J. Beauchamp, and F. S. Colwell, 1997, Spatial and temporal variations of microbial properties at different scales in shallow subsurface sediments, Appl. Biochem. Biotechnol. 63-65:797-808.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., B. Xia, H. Huang, A. V. Palumbo, and J. M. Tiedje, 2004, Microbial diversity and heterogeneity in sandy subsurface soils, Appl. Environ. Microbiol. 70:1723-1734.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lehman, R.M. (2007). Microbial Distributions And Their Potential Controlling Factors In Terrestrial Subsurface Environments. In: Franklin, R.B., Mills, A.L. (eds) The Spatial Distribution of Microbes in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6216-2_6

Download citation

Publish with us

Policies and ethics