Skip to main content

An Instructional Model Derived from Model Construction and Criticism Theory

  • Chapter
Model Based Learning and Instruction in Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. C., Nguyen-Jahiel, K., McNurlen, V., Archodidoi, A., Kim, S.-y, Reznitskaya, A., et al. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19, 1–46.

    Article  Google Scholar 

  • Billett, S. (1996). Situated learning: Bridging sociocultural and cognitive theorizing. Learning and Instruction, 6(3), 263–280.

    Article  Google Scholar 

  • Brown, A., & Campione, J. (1993). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice. Cambridge: MIT Press.

    Google Scholar 

  • Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge acquisition. In L. B. Resnick (Ed.), Knowing, learning, and instruction. Essays in honor of Robert Glaser (pp. 393–451). Hillsdale, New Jersey: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895–935.

    Article  Google Scholar 

  • Bulgren, J. A., Deshler, D. D., Schumaker, J. B., & Lenz, B. K. (2000). The use and effectiveness of analogical instruction in diverse secondary content classrooms. Journal of Educational Psychology, 92(3), 426–441.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & Leeuw, N. d. (1994). From things to processes: A theory of conceptual change from learning science concepts. Learning and Instruction, 4, 27–43.

    Article  Google Scholar 

  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxanomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35, 623654.

    Article  Google Scholar 

  • Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688–712.

    Article  Google Scholar 

  • Clement, J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12, 563–586.

    Article  Google Scholar 

  • Clement, J. (1989). Learning via model construction and criticism. In G. Glover, R. Ronning, & C. Reynolds (Eds.), Handbook of creativity: Assessment, theory and research (pp. 341–381). New York: Plenum.

    Google Scholar 

  • Clement, J. (1993a). Model construction and criticism cycles in expert reasoning. Paper presented at the Fifteenth Annual Meeting of the Cognitive Science Society, Hillsdale, NJ.

    Google Scholar 

  • Clement, J. (1993b). Scientific learning in experts: Explanatory model construction vs. induction from observations. Paper presented at the AERA Conference.

    Google Scholar 

  • Clement, J. (1993c). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257.

    Article  Google Scholar 

  • Clement, J. (2000a). Analysis of clinical interviews: Foundations and model viability. In A. E. Kelly, & R. Lesh (Eds.), Handbook of research methods in mathematics and science education (pp. 547–589). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Clement, J. (2000b). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053.

    Article  Google Scholar 

  • Clement, J. (2003). Imagistic simulation in scientific model construction. In R. Alterman and D. Kirsh, Editors, Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society, 25, 258–263. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Clement, J. (2004). Imagistic processes in analogical reasoning: Conserving transformations and dual simulations. In K. Forbus, D. Gentner & T. Regier, (Eds.),Proceedings of the Twenty-Sixth Annual Conference of the Cognitive Science Society, 26,233–238. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Clement, J. (in press). The role of explanatory models in teaching for conceptual change. In S. Vosniadou, (Eds.), Handbook of research on conceptual change.

    Google Scholar 

  • Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International Journal of Science Education, 11(Special Issue), 554–565.

    Article  Google Scholar 

  • Clement, J., & Rea-Ramirez, M. A. (1998). The role of dissonance in conceptual change. Proceedings of the National Association for Research in Science Teaching Conference.

    Google Scholar 

  • Clement, J., & Steinberg, M. (2002). Step-wise evolution of mental models of electric circuits: A “learning-aloud” case study. Journal of the Learning Sciences, 11(4), 389–452.

    Article  Google Scholar 

  • Cobern, W. W. (1993). Contextual constructivism: The impact of culture on the learning and teaching of science. In K. Tobin (Ed.), The practice of constructivism in science education. Washington, DC: American Association for the Advancement of Science, pp. 51–69.

    Google Scholar 

  • Collins, A., & Gentner, D. (1987). How people construct mental models. In D. Holland & N. Quinn (Eds.), Cultural models in thought and language (pp. 243–265). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Craig, D. L., Nersessian, N., & Catambone, R. (2002). Perceptual Simulation in Analogical Problem Solving. In L. Magnani, & N. Nersessian (Eds.), Model-Based Reasoning: Science, Technology, Values (pp. 167–189). New York: Kluwer Academic Publishers.

    Google Scholar 

  • Dreyfus, A., Jungwirth, E. and Eliovitch, R. (1990) Applying the ‘Cognitive Conflict’ strategy for conceptual change - some implications, difficulties and problems. Science Education, 74 (5), 555–569

    Article  Google Scholar 

  • Darden, L. (1991). Theory change in science. Strategies from Mendelian genetics. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Driver, R. (1995). Constructivist approaches to science teaching. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 385–400). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (1998). Learning in science - from behaviorism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 3–25). Great Britain: Kluwer Academic Publishers.

    Google Scholar 

  • Dunbar, K. (1995). How scientist really reason: scientific reasoning in real-world laboratories. In R. J. Sternberg & J. Davidson (Eds.), The nature of insight (pp. 256–396). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gentner, D., & Stevens, A. L. (Eds.) (1983). Mental models.Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gilbert, J. K., & Boulter, C. (1998). Learning science through models and modeling. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 53–66). UK: Kluwer Academic Publishers.

    Google Scholar 

  • Gilbert, J. K. & Boulter, C. J. (2000). Developing models in science education. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In Glynn, S. M., Yeany, R. H., & Britton, B. K. (Eds.) The Psychology of Learning Science(pp. 219–240). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gobert, J. (2000). A typology of causal models for plate tectonics: Inferential power and barriers to understanding. International Journal of Science Education, 22(9), 937–977.

    Article  Google Scholar 

  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891–894.

    Article  Google Scholar 

  • Gould, S. J. (1980). Darwin’s middle road. In The panda’s thumb. More reflections in natural history. New York: W. W. Norton & Company.

    Google Scholar 

  • Gruber, H. (1974). Darwin on man. New York: E. P. Dutton.

    Google Scholar 

  • Harmon-Jones, E. & Mills, J. (1999). Cognitive dissonance: Progress on a pivotal theory in social psychology. Appendix B.

    Google Scholar 

  • Harré, R. (1972). The philosophies of science: An introductory survey. NY: Oxford University Press.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching science. Science Education, 80, 509–534.

    Article  Google Scholar 

  • Hatano, G. (1993). Commentary: Time to merge Vygotskian and constructivist conceptions of knowledge acquisition. In E. A. Forman, N. Minick & C. A. Stone (Eds.), Contexts for learning: Sociocultural dynamics in children’s development. New York: Oxford University Press.

    Google Scholar 

  • Hennessey, G. M. (1999). Probing the dimensions of metacognition: Implications for conceptual change teaching-learning. Paper presented at the NARST Conference, Boston, MA.

    Google Scholar 

  • Hesse, M. (1966). Models and Analogy in Science. South Bend, IN: Notre Dame University Press.

    Google Scholar 

  • Hewson, P., & M. Hewson. (1992). The status of students’ conceptions. In R. Duit, F. Goldberg, & H. Niedderer. (Eds.), Research in Physics Learning: Theoretical Issues and Empirical Studies, Kiel, Germany: Institute for Science Education.

    Google Scholar 

  • Hogan, K. (1999b). Relating students’ personal frameworks for science learning to their cognition in collaborative contexts. Science Education, 83, 1–32.

    Article  Google Scholar 

  • Hogan, K., Nastasi, B. K., & Pressley, M. (2000). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379–432.

    Article  Google Scholar 

  • Johnson, S. K., & Stewart, J. (1990). Using philosophy of science in curriculum development: An example from high school genetics. International Journal of Science Education, 12(3), 297–307.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1986). Reasoning without logic. In T. Myers, K. Brown & B. McGonigle (Eds.), Reasoning and discourse processes (pp. 13–49). London, UK: Academic Press.

    Google Scholar 

  • Kuhn T. S. (1970) The Structure of Scientific Revolutions. Chicago: Chicago University Press.

    Google Scholar 

  • Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18(4), 495–523.

    Article  Google Scholar 

  • Leander, K. M., & Brown, D. E. (1999). “You understand but you don’t believe it”: Tracing the stabilities and instabilities of interaction in a physics classroom through a multidimensional framework. Cognition and Instruction, 17(1), 93–135.

    Article  Google Scholar 

  • Niedderer, H., Goldberg, F. (1996). Learning Processes in Electric Circuits. Paper presented at NARST, St. Louis MO, USA. (http://didaktik.physik.uni-bremen.de/ niedderer/pubs.htm)

    Google Scholar 

  • Nersessian, N. J. (1985). Faraday’s field concept. In D. Gooding & F. A. J. L. James (Eds.), Faraday rediscovered. Essays on the life and work of Michael Faraday 1791–1867 (pp. 175–187). New York, NY: Stockton Press.

    Google Scholar 

  • Nersessian, N. J. (1987). A cognitive-historical approach to meaning in scientific theories. In N. J. Nersessian (Ed.), The process of science (pp. 161–177). Dordrecht: Martinus Nijhoff Publishers.

    Google Scholar 

  • Nersessian, N. J. (1990). Methods of conceptual change in science: Imagistic and analogical Reasoning. Philosophica, 45, 33–52.

    Google Scholar 

  • Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (Vol. 15, pp. 3–44). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Nersessian, N. J. (1995). Should physicists preach what they practice? Constructive modeling in doing and learning physics. Science & Education, 4, 203–226.

    Article  Google Scholar 

  • Nersessian, N. J., Kurz-Milcke, E., & Davies, J. (2005). Ubiquitous computing in science and engineering research laboratories: A case study from biomedical engineering. In G. Kouzoulis et al., (Eds.), (pp. 167–198). Knowledge in the New Technologies Berlin: Peter Lang Publishers.

    Google Scholar 

  • Nunez-Oviedo, M. C. (2001). A teaching method derived from model construction and criticism theory. Unpublished Comprehensive Exam Paper, University of Massachusetts, Amherst.

    Google Scholar 

  • Nunez-Oviedo, M. C. (2003). Teacher-student co-construction processes in biology: Strategies for developing mental models in large group discussions. Unpublished Doctoral Dissertation, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • Nunez-Oviedo, M. C., & Clement, J. (2002). An instructional method derived from model construction and criticism theory. Paper presented at the NARST Conference, New Orleans, LA.

    Google Scholar 

  • Nunez-Oviedo, M. C., Rea-Ramirez, M. A., Clement, J., & Else, M. J. (2002). Teacher-student co-construction in middle school life science. Proceedings of the AETS Conference.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Raghavan, K. & Glaser, R. (1995). Model based analysis and reasoning in science: the MARS curriculum. Science Education, 79, 37–61.

    Article  Google Scholar 

  • Rea-Ramirez, M. A. (1998). Model of conceptual understanding in human respiration and strategies for instruction. (Doctoral Dissertation) DAI - 9909208, University of Massachusetts, Amherst.

    Google Scholar 

  • Rea-Ramirez, M. A. (March, 1999). Developing complex mental models through explanatory need. Paper presented at the NARST Conference, Boston, MA.

    Google Scholar 

  • Rea-Ramirez & Gibson, (2001). Keeping the inquiry in curriculum designed to help students’ conceptual understanding of cellular respiration. Proceedings of the 2002 Annual International Conference of the Association for the Education of Teachers in Science. Charlotte, N. C.

    Google Scholar 

  • Rea-Ramirez, M. A., Nunez-Oviedo, M. C., Clement, J., Else, M. J. (2002). Energy in the human body: a middle school curriculum. Amherst, MA: University of Massachusetts.

    Google Scholar 

  • Resnick, L. B., Salmon, M., Seitz, C. M., Wathen, S. H., & Holowchak, M. (1993). Reasoning in conversation. Cognition and Instruction, 11(3 & 4), 347–364.

    Article  Google Scholar 

  • Schnotz, W., & Preub, A. (1999). Task-dependent construction of mental models as a basis for conceptual change. In G. Rickheit, & C. Habel (Eds), Mental models in discourse processing and reasoning. Amsterdam: North-Holland.

    Google Scholar 

  • Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions: knowing by simulated doing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 116–136.

    Article  Google Scholar 

  • Schweber, S. (1977). The origin of the origin revisited. Journal of the History of Biology, 10(229–316).

    Article  Google Scholar 

  • Scott, P. H. (1992). Pathways in learning science: A case study of the development of one student’s ideas relating to the structure of matter. In R. Duit, F. Goldberg & H. Niederer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Proceedings of an International Workshop held at the University of Bremen (pp. 203–224). Kiel, Germany: IPN/Institute for Science Education.

    Google Scholar 

  • Scott, P. H., Asoko, H. M., & Driver, R. H. (1992). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg & H. Niederer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Proceedings of an International Workshop held at the University of Bremen (pp. 310–329). Kiel, Germany: IPN/Institute for Science Education.

    Google Scholar 

  • Stavy, R. (1991) Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching 28 (4),305–313

    Article  Google Scholar 

  • Steinberg, M., & Wainwright, C. L. (1993). Using models to teach electricity -the CASTLE project. The Physics Teacher, 31(6), 353–357.

    Article  Google Scholar 

  • Trickett, S. & Trafton, J. G. (2002) The instantiation and use of conceptual simulations in evaluating hypotheses: Movies-in-the-mind in scientific reasoning. In WayneGray and Christian Schunn, (Eds.), Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society 22, 878–883. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Thagard, P. (1992). Conceptual Revolutions, Princeton, NJ, Princeton University Press.

    Google Scholar 

  • Thagard, P. (1997) Coherent and Creative Conceptual Combinations. In: T. B. Ward, S. M. Smith, and J. Viad (eds), Creative thought: an investigation of conceptual structures and processes. Washington, DC. American Psychological Association.

    Google Scholar 

  • Tweney, R. D. (1985). Faraday’s discovery of induction: A cognitive approach. In D. Goodling & F. James (Eds.), Faraday rediscovered: Essays on the life and work of Michael Faraday, 1791–1867 (pp. 189–209). New York: Stockton Press.

    Google Scholar 

  • Tweney, R. D. (2001). Scientific thinking: A cognitive-historical approach. In K. Crowley, C. D. Schunn & T. Okada (Eds.), Designing for science. Implications from everyday, classroom, and professional settings (pp. 141–173). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Voss, J. F., Perkins, D. N., & Segal, J. W. (Eds.). (1991). Informal reasoning and education. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Vygotsky, L. S. (1978).Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press.

    Google Scholar 

  • White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3–118.

    Article  Google Scholar 

  • Zietsman, A. and Clement , J. (1987). The role of extreme case reasoning in instruction for conceptual change. Journal of the Learning Sciences, 6(1), 61–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Rea-Ramirez, M.A., Clement, J., Núñez-Oviedo, M.C. (2008). An Instructional Model Derived from Model Construction and Criticism Theory. In: Clement, J.J., Rea-Ramirez, M.A. (eds) Model Based Learning and Instruction in Science. Models and Modeling in Science Education, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6494-4_2

Download citation

Publish with us

Policies and ethics