Skip to main content

Quality Argumentation and Epistemic Criteria

  • Chapter

Part of the book series: Science & Technology Education Library ((CTISE,volume 35))

The language of science is not exclusively the enunciation of terms and concepts, facts and laws, principles and hypotheses. The language of science is closely related to the restructuring character of scientific claims about method, goals, and explanations, a character firmly established in the history, philosophy and sociology of science (Duschl, 1994; Duschl & Hamilton, 1997; Hodson, 1985). Language of science is a discourse that critically examines and evaluates the numerous and at times iterative transformations of evidence into explanations (Duschl & Grandy, 2007). Thus, as this edited volume on argumentation demonstrates, educational researchers are focusing on ways to understanding the language of science and to support dialogic argumentation in science classrooms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bransford, J., Brown, A., & Cocking, R. (1999). How people learn: Brain, mind, experience and school. Washington, DC: National Academy Press. [http://www.nap.edu]

  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argument in classrooms. Science Education, 84(3), 287–313.

    Article  Google Scholar 

  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Philadelphia, PA: Open University Press.

    Google Scholar 

  • Duschl, R. A. (1996). Research on the history and philosophy of science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 443–465). Macmillan: New York.

    Google Scholar 

  • Duschl, R. (2000). Making explicit the nature of science. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: Contributions from research (pp. 187–206). Philadelphia, PA: Open University Press.

    Google Scholar 

  • Duschl, R. A., & Gitomer, D. H. (1997). Strategies and challenges to changing the focus of assessment and instruction in science classrooms. Educational Assessment, 4(1), 37–73.

    Article  Google Scholar 

  • Duschl, R. A., & Grandy, R. (Eds.) (2007). Establishing a consensus agenda for K-12 science inquiry. Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Duschl, R. A., & Hamilton, R. J. (1997). Conceptual change in science and the learning of science. In B. Fraser & K. Tobin (Eds.), International handbook of science education (pp. 1047–1065). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Duschl, R., & Osborne, J. (2002). Argumentation and discourse processes in science education. Studies in Science Education, 38, 39–72.

    Article  Google Scholar 

  • Duschl, R., Ellenbogen, K., & Erduran, S. (1999). Understanding dialogic argumentation among middle school science students. Paper presented at the annual meeting of the American Educational Research Association, Montreal, April.

    Google Scholar 

  • Duschl, R., Schweingruber, H., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press. [http://www.nap.edu]

  • Eemeren, F. H. van, Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Krabbe, E. C. W., Plantin, C., Walton, D. N., Willard, C. A., Woods, J., & Zarefsky, D. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TApping into argumentation: developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88, 915–933.

    Article  Google Scholar 

  • Goldman, S., Duschl, R., Williams, S. Ellenbogen, K., & Tsou, C. (2002). Interaction and discourse processes during computer mediated communication. In H. Van Oostendorp (Ed.), Cognition in a digital world. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources from learning physics. Journal of the Learning Sciences, 12, 53–91.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (Eds.) (2002) Personal epistemology: The psychology of beliefs about knowledge and knowing. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hodson, D. (1985). Philosophy of science, science and science education. Studies in Science Education, 12, 25–57.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P., Rodrigues, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757–792.

    Article  Google Scholar 

  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Article  Google Scholar 

  • Kelly, G. J., Chen, C., & Crawford, T. (1998). Methodological considerations for studying science-in-the-making in educational settings. Research in Science Education, 28(1), 23–50.

    Article  Google Scholar 

  • Kelly, G. J., & Crawford, T. (1997). An ethnographic investigation of the discourse processes of school science. Science Education, 81(5), 533–560.

    Article  Google Scholar 

  • Kuhn, D. (1993). Science as argument. Science Education, 77(3) 319–337.

    Article  Google Scholar 

  • Lawson, A. (2003). The nature and development of hypothetico-deductive argumentation with implications for science learning. International Journal of Science Education, 25(11), 1378–1408.

    Article  Google Scholar 

  • Lemke, J. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.

    Google Scholar 

  • Millar, R., & Osborne, J. F. (Eds.) (1998). Beyond 2000: Science education for the future. London: King’s College London.

    Google Scholar 

  • NAEP (2006). Science framework and specifications for the 2009 National Assessment of Educational Progress, Washington, DC. [http://www.nagb.org]

  • National Research Council (1996). National standards for science education. Washington, DC: National Academy of Sciences Press.

    Google Scholar 

  • Osborne, J. Duschl, R., & Fairbrother, B. (2002). Breaking the mould? Teaching science for public understanding. London: The Nuffield Foundation.

    Google Scholar 

  • Pellegrino, J., Chudowsky, N., & Glaser, R. (2001). Knowing what student know. Washington, DC: National Academy Press. [http://www.nap.edu]

  • Pontecorvo, C., & Girardet, H. (1993). Arguing and reasoning in understanding historical topics. Cognition and Instruction, 11(3&4), 365–395.

    Article  Google Scholar 

  • Rescher, N. (1976). Plausible reasoning: An introduction to the theory and practice of plausible inference. Aspen, CO: Van Gorcum.

    Google Scholar 

  • Rescher, N. (1977). Dialectics: A controversy-oriented approach to the theory of knowledge. Albany, NY: State University of New York Press.

    Google Scholar 

  • Sandoval, W. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51.

    Article  Google Scholar 

  • Sandoval, W., & Millwood, K. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition & Instruction, 23(1), 23–55.

    Article  Google Scholar 

  • Sandoval, W., & Reiser, B. (2004). Explanation driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372.

    Article  Google Scholar 

  • Sampson, V., & Clark, D. (2006). Assessment of argument in science education: A critical review of the literature. In Proceedings of International Conference of the Learning Sciences 2006, Bloomington, IN. (pp. 655–661).

    Google Scholar 

  • Sawyer, R. (Ed.) (2006). The Cambridge handbook of the learning sciences. New York: Cambridge University Press.

    Google Scholar 

  • Siegel, H. (1995). Why should educators care about argumentation. Informal Logic, 17(2), 159–176.

    Google Scholar 

  • Takao, A., & Kelly, G. (2003). Assessment of evidence in university students’ scientific writing. Science & Education, 12(4), 341–363.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • White, B., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3–118.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Duschl, R.A. (2007). Quality Argumentation and Epistemic Criteria. In: Erduran, S., Jiménez-Aleixandre, M.P. (eds) Argumentation in Science Education. Science & Technology Education Library, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6670-2_8

Download citation

Publish with us

Policies and ethics