Skip to main content

Defensive Roles of Polyphenol Oxidase in Plants

  • Chapter
Book cover Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alba-Meraz A, Choe HT (2002) Systemic effects on oxidative enzymes in Phaseolus vulgaris leaves that have been wounded by the grasshopper Melanoplus differentialis (Thomas) or have had a foliar application of jasmonic acid. Int J Plant Sci 163:317–328

    Article  CAS  Google Scholar 

  • Aydemir T, Akkanh G (2006) Partial purification and characterization of polyphenol oxidase from celery root (Apium graveolens L.) and the investigation of the effects on the enzyme activity of some inhibitors. Int J Food Sci Tech 41:1090–1098

    Article  CAS  Google Scholar 

  • Bachem CWB, Speckmann GJ, Vanderlinde PCG, Verheggen FTM, Hunt MD, Steffens JC, Zabeau M (1994) Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers. Biotechnology 12:1101–1105

    Article  CAS  Google Scholar 

  • Barbehenn RV, Bumgarner SL, Roosen E, Martin MM (2001) Antioxidant defenses in caterpillars: role of the ascorbate recycling system in the midgut lumen. J Insect Physiol 47:349–357

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Walker AC, Uddin F (2003) Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves. J Chem Ecol 29:1099–1116

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Jones CP, Yip L, Tran L, Constabel CP (2007) Does the induction of polyphenol oxidase defend trees against caterpillars? Assessing defenses one at a time with transgenic poplar. Oecologia 154:129–400

    Article  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  PubMed  CAS  Google Scholar 

  • Bi JL, Felton GW (1995) Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21:1511–1530

    Article  CAS  Google Scholar 

  • Bi JL, Murphy JB, Felton GW (1997) Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. J Chem Ecol 23:97–117

    Article  CAS  Google Scholar 

  • Castanera P, Steffens JC, Tingey WM (1996) Biological performance of Colorado potato beetle larvae on potato genotypes with differing levels of polyphenol oxidase. J Chem Ecol 22:91–101

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty N (2005) Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavor components and enzyme activities. Phytoparasitica 33:88–96

    CAS  Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Path 56:13–23

    Article  CAS  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  PubMed  CAS  Google Scholar 

  • Cho MH, Moinuddin SGA, Helms GL, Hishiyama S, Eichinger D, Davin LB, Lewis NG (2003) (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc Natl Acad Sci USA 100:10641–10646

    Article  PubMed  CAS  Google Scholar 

  • Christopher ME, Miranda M, Major IT, Constabel CP (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947

    Article  PubMed  CAS  Google Scholar 

  • Cipollini DF, Redman AM (1999) Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J Chem Ecol 25:271–281

    Article  CAS  Google Scholar 

  • Cipollini ML, Paulk E, Cipollini DF (2002) Effect of nitrogen and water treatment on leaf chemistry in horsenettle (Solanum carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (Manduca sexta). J Chem Ecol 28:2377–2398

    Article  PubMed  CAS  Google Scholar 

  • Clausen TP, Reichardt PB, Bryant JP, Werner RA, Post K, Frisby K (1989) Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J Chem Ecol 15:2335–2346

    Article  CAS  Google Scholar 

  • Coetzer C, Corsini D, Love S, Pavek J, Tumer N (2001) Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase. J Agric Food Chem 49:652–657

    Article  PubMed  CAS  Google Scholar 

  • Constabel CP, Ryan CA (1998) A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47:507–511

    Article  CAS  Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1996) Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy in ecological interactions. Plenum Press, New York, pp 231–252

    Google Scholar 

  • Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407–411

    Article  PubMed  CAS  Google Scholar 

  • Constabel CP, Yip L, Patton JJ, Christopher ME (2000) Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiol 124:285–295

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    Article  PubMed  CAS  Google Scholar 

  • Deborah SD, Palaniswami A, Vidhyasekaran P, Velazhahan R (2001) Time-course study of the induction of defense enzymes, phenolics and lignin in rice in response to infection by pathogen and non-pathogen. J Plant Dis Prot 108:204–216

    CAS  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161–172

    Article  CAS  Google Scholar 

  • Doares SH, Narváez-Vásquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    PubMed  CAS  Google Scholar 

  • Duckworth HW, Coleman JE (1970) Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem 245:1613–1625

    PubMed  CAS  Google Scholar 

  • Felton GW, Donato K, Delvecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694

    Article  CAS  Google Scholar 

  • Felton GW, Duffey SS (1992) Avoidance of antinutritive plant defense: role of midgut pH in Colorado potato beetle. J Chem Ecol 18:571–583

    Article  CAS  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285

    Article  CAS  Google Scholar 

  • Felton GW, Summers CB, Mueller AJ (1994) Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper. J Chem Ecol 20:639–650

    Article  CAS  Google Scholar 

  • Gandia-Herrero F, Jimenez-Atienzar M, Cabanes J, Garcia-Carmona F, Escribano J (2005) Evidence for a common regulation in the activation of a polyphenol oxidase by trypsin and sodium dodecyl sulfate. Biol Chem 386:601–607

    Article  PubMed  CAS  Google Scholar 

  • Guyot S, Vercauteren J, Cheynier V (1996) Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry 42:1279–1288

    Article  CAS  Google Scholar 

  • Haruta M, Pedersen JA, Constabel CP (2001) Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates. Physiol Plant 112:552–558

    Article  PubMed  CAS  Google Scholar 

  • Heng-Moss T, Sarath G, Baxendale F, Novak D, Bose S, Ni XH, Quisenberry S (2004) Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J Econ Entomol 97:1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700

    Article  PubMed  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Op Plant Biol 5:224–229

    Article  CAS  Google Scholar 

  • Hunt MD, Eannetta NT, Yu HF, Newman SM, Steffens JC (1993) cDNA cloning and expression of potato polyphenol oxidase. Plant Mol Biol 21:59–68

    Article  PubMed  CAS  Google Scholar 

  • Janovitz-Klapp AH, Richard FC, Goupy PM, Nicolas JJ (1990) Inhibition studies on apple polyphenol oxidase. J Agric Food Chem 38:926–931

    Article  CAS  Google Scholar 

  • Jiang Y, Miles PW (1993) Generation of H2O2 during enzymatic oxidation of catechin. Phytochemistry 33:29–34

    Article  CAS  Google Scholar 

  • Jimenez M, Garcia-Carmona F (1999) Myricetin, an antioxidant flavonol, is a substrate of polyphenol oxidase. J Sci Food Agric 79:1993–2000

    Article  CAS  Google Scholar 

  • Johnson KS, Barbehenn RV (2000) Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46:897–903

    Article  PubMed  CAS  Google Scholar 

  • Kanade SR, Paul B, Rao AGA, Gowda LR (2006) The conformational state of polyphenol oxidase from field bean (Dolichlos lablah) upon SDS and acid-pH activation. Biochem J 395:551–562

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2002) Manduca quinquemaculata’s optimization of intra-plant oviposition to predation, food quality, and thermal constraints. Ecology 83:2346–2354

    Article  Google Scholar 

  • Kowalski SP, Eannetta NT, Hirzel AT, Steffens JC (1992) Purification and characterization of polyphenol oxidase from glandular trichomes of Solanum berthaultii. Plant Physiol 100:677–684

    PubMed  CAS  Google Scholar 

  • Kruzmane D, Jankevica L, Ievinsh G (2002) Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris. Physiol Plant 115:577–584

    Article  PubMed  CAS  Google Scholar 

  • Lawrence SD, Novak N (2001) A rapid method for the production and characterization of recombinant insecticidal proteins in plants. Molec Breeding 8:139–146

    Article  CAS  Google Scholar 

  • Lawrence SD, Novak NG (2006) Expression of poplar chitinase in tomato leads to inhibition of development in colorado potato beetle. Biotech Lett 28:593–599

    Article  CAS  Google Scholar 

  • Le Bourvellec C, Le Quere J-M, Sanoner P, Drilleau J-F, Guyot S (2004) Inhibition of apple polyphenol oxidase by procyanidins and polyphenol oxidation products. J Agric Food Chem 52:122–130

    Article  PubMed  CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  PubMed  CAS  Google Scholar 

  • Major IT, Constabel CP (2006) Molecular analysis of poplar defense against herbivory. Comparison of wound- and insect elicitor-induced gene expression. New Phytol 172:617–635

    CAS  Google Scholar 

  • Martinez-Cayuela M, Faus MJ, Gil A (1988) Effects of some reductants on the activity of cherimoya polyphenol oxidase. Phytochemistry 27:1589–1592

    Article  CAS  Google Scholar 

  • Marusek CM, Trobaugh NM, Flurkey WH, Inlow JK (2006) Comparative analysis of polyphenol oxidase from plant and fungal species. J Inorg Biochem 100:108–123

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    Article  PubMed  CAS  Google Scholar 

  • Melo GA, Shimizu MM, Mazzafera P (2006) Polyphenoloxidase activity in coffee leaves and its role in resistance against coffee leaf miner and coffee leaf rust. Phytochemistry 67:277–285

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Molec Plant Microbe Interact 20:816–831

    Article  CAS  Google Scholar 

  • Murata M, Nishimura M, Murai N, Haruta M, Homma S, Itoh Y (2001) A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Biosc Biotech Biochem 65:383–388

    Article  CAS  Google Scholar 

  • Nagai T, Suzuki N (2003) Polyphenol oxidase from bean sprouts (Glycine max L.). J Food Sci 68:16–20

    Article  CAS  Google Scholar 

  • Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Negishi O, Ozawa T (2000). Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochemistry 54:481–487

    Article  PubMed  CAS  Google Scholar 

  • Nerya O, Musa R, Khatib S, Tamir S, Vaya J (2004) Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65:1389–1395

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Quisenberry SS, Heng-Moss T, Markwell J, Sarath G, Klucas R, Baxendale F (2001) Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding. J Econ Entomol 94:743–751

    Article  PubMed  CAS  Google Scholar 

  • Parsons TJ, Bradshaw HD, Gordon MP (1989). Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86:7895–7899

    Article  PubMed  CAS  Google Scholar 

  • Raj SN, Sarosh BR, Shetty HS (2006) Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Funct Plant Biol 33:563–571

    Article  CAS  Google Scholar 

  • Ralph S, Oddy C, Cooper D, et al. (2006) Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15:1275–1297

    Article  PubMed  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp lycopersici. Plant Soil 239:55–68

    Article  CAS  Google Scholar 

  • Rathjen AH, Robinson SP (1992) Aberrant processing of polyphenol oxidase in a variegated grapevine mutant. Plant Physiol 99:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Redman AM, Cipollini DF, Schultz JC (2001) Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126:380–385

    Article  Google Scholar 

  • Ren F, Lu YT (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Sci 171:286–292

    Article  CAS  Google Scholar 

  • Ruuhola T, Yang S (2006) Wound-induced oxidative responses in mountain birch leaves. Ann Bot 97:29–37

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Froderman T, Flurkey WH (1997) Isolation and characterization of a mung bean leaf polyphenol oxidase. Phytochemistry 45:15–21

    Article  CAS  Google Scholar 

  • Steffens JC, Harel E, Hunt MD (1994) Polyphenol oxidase. In: Ellis BE, Kuroki GW, Stafford HA (eds) Genetic engineering of plant secondary metabolism. Plenum Press, New York,pp 276–304

    Google Scholar 

  • Steiner U, Schliemann W, Bohm H, Strack D (1999) Tyrosinase involved in betalain biosynthesis of higher plants. Planta 208:114–124

    Article  CAS  Google Scholar 

  • Stevens LH, Davelaar E, Kolb RM, Pennings EJM, Smit NPM (1998) Tyrosine and cysteine are substrates for blackspot synthesis in potato. Phytochemistry 49:703–707

    Article  CAS  Google Scholar 

  • Stout MJ, Workman KV, Bostock RM, Duffey SS (1998) Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113:74–81

    Article  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    Article  CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26:312–324

    Article  Google Scholar 

  • Thaler JS, Karban R, Ullman DE, Boege K, Bostock RM (2002) Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131:227–235

    Article  Google Scholar 

  • Thipyapong P, Steffens JC (1997) Tomato polyphenol oxidase – Differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol 115:409–418

    PubMed  CAS  Google Scholar 

  • Thipyapong P, Joel DM, Steffens JC (1997) Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiol 113:707–718

    PubMed  CAS  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004a) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117

    Article  CAS  Google Scholar 

  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004b) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167:693–703

    Article  CAS  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • van Gelder CWG, Flurkey WH, Wichers HJ (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45:1309–1323

    Article  PubMed  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Knight DP, Roberts SE, Robinson SP (2005) Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362

    Article  CAS  Google Scholar 

  • Walker JRL, McCallion RF (1980) Selective inhibition of ortho-diphenol and para-diphenol oxidases. Phytochemistry 19:373–377

    Article  CAS  Google Scholar 

  • Wang JH, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96

    Article  PubMed  CAS  Google Scholar 

  • Wuyts N, De Waele D, Swennen R (2006) Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiol Biochem 44:308–314

    Article  PubMed  CAS  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27:361–422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Constabel, C.P., Barbehenn, R. (2008). Defensive Roles of Polyphenol Oxidase in Plants. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_12

Download citation

Publish with us

Policies and ethics