Skip to main content

The Use of Mycorrhizal Biotechnology in Restoration of Disturbed Ecosystem

  • Chapter
Book cover Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

Mycorrhizal fungi play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and productivity of plants. Mycorrhizas also protect plants against root pathogens and toxic stresses. The fundamental importance of the mycorrhizal association in restoration and to improve revegetation of disturbed mined lands is well recognized. However, the use of mycorrhizal biotechnology in land reclamation and revegetation of disturbed mine sites is not well practiced in many parts of the world. The destruction of mycorrhizal fungal network in soil system is the vital event of soil disturbance, and its reinstallation is an essential approach of habitat restoration. Successful revegetation of severely disturbed mine lands can be achieved by using “biological tools” mycorrhizal fungi inoculated tree seedlings, shrubs, and grasses. This chapter discusses the different types of mycorrhizas, which play an essential function in altering disturbed lands into productive lands, the mechanisms by which disturbed ecosystem benefits through symbiotic associations and their interactions in the rhizosphere. The importance of reinstallation of mycorrhizal systems in the rhizosphere is emphasized and their impact in landscape regeneration and in bioremediation of contaminated soils are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Karaki, G.N., Hammad, R., and Rusan, M., 2001, Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11: 43-47.

    Article  CAS  Google Scholar 

  • Allen, M.F., Allen, E.B., and Gómez-Pompa, A., 2005, Effects of mycorrhizae and non-target organisms on restoration of a seasonal tropical forest in Quintano Roo, Mexico: factors limiting tree establishment. Restor. Ecol. 13: 325-533.

    Article  Google Scholar 

  • Amaranthus, M.P., and Perry, D.A., 1987, Effect of soil transfer on ectomycorrhizal formation and the survival and growth of conifer seedlings on old, reforested clear-cuts. Can. J. For. Res. 17: 944-950.

    Article  Google Scholar 

  • Azcón-Aguilar, C., and Barea, J.M., 1996, Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6: 457-464.

    Article  Google Scholar 

  • Bécard, G., and Piché, Y., 1992, Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: Techniques for the study of mycorrhiza, J., Norris, D., Read, and A., Verma eds., Academic, New York, pp. 89-108.

    Google Scholar 

  • Bois, G., Bertrand, A., Piché, Y., Fung, M., and Khasa, D.P., 2006, Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16: 99-109.

    Article  CAS  PubMed  Google Scholar 

  • Bois, G.Y., Piché, Fung, M.Y.P., and Khasa, D.P., 2005, Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15: 149-158.

    Google Scholar 

  • Bradley, R., Burt, A.J., and Read, D.J., 1982, The biology of mycorrhiza in the Ericaceae VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91: 197-209.

    Article  CAS  Google Scholar 

  • Browning, M.H.R., and Whitney, R.D., 1992, Field performance of black spruce and jack pine inoculated with selected species of ectomycorrhizal fungi. Can. J. For. Res. 22: 1974-1982.

    Article  Google Scholar 

  • Browning, M.H.R., and Whitney, R.D., 1993, Infection of containerized jack pine and black spruce by Laccaria species and Thelephora terristris and seedling survival and growth after outplanting. Can. J. For. Res. 23: 330-333.

    Article  Google Scholar 

  • Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N., 1996, Working with mycorrhizas in forestry and agriculture. ACIAR, Canbera Australia.

    Google Scholar 

  • Brunner, I.L., Brunner, F., and Miller, O.K., 1990, Ectomycorrhizal synthesis with Alaskan Alnus tenuifolia. Can. J. Bot. 68: 761-767.

    Article  Google Scholar 

  • Budi, S., Caussanel, J., Trouvelot, A., and Gianinazzi, S., 1998, The biotechnology of mycor-rhizas. In: Microbial interactions in agriculture and forestry, N.S. Subba Rao, and Y.R. Dommergues eds., Science Publishers, New Delhi, India, pp. 149-162.

    Google Scholar 

  • Cairney, J.W.G., and Meharg, A.A., 2003, Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Europ. J. Sol. Sci. 54: 735-740.

    Article  Google Scholar 

  • Caravaca, F., Barea, J.M., Palenzuela, J., Figuerosa, D., alguacil, M.M., and Roldán, A., 2003, Establishment of shrub species in a degraded semiarid site after inoculation with native or allochthonous arbuscular mycorrhizal fungi. Appl. Soil Ecol. 22: 103-111.

    Article  Google Scholar 

  • Chan, F.J., and R.M. Wong, 1989, Reestablishment of native riparian species at an altered high elevation site. In: Proceedings of California Riparian Systems Conference, Protection, management, and restoration for the 1990’s, pp. 428-435.

    Google Scholar 

  • Colpaert, J.V., and Van Assche, J.A., 1992, The effects of cadmium and cadmium-zinc inter-actions on the axenic growth of ectomycorrhizal fungi. Plant Soil 145: 237-243.

    Article  CAS  Google Scholar 

  • Colpaert, J.V., and Van Assche, J.A., 1993, The effects of cadmium on mycorrhizal Pinus sylvestris L. New Phytol. 123: 325-333.

    Article  CAS  Google Scholar 

  • Cooke, J.C., and Lefor, M.W., 1990, Comparison of veiscular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a costal salt marsh in Clinto, Connecticut, USA. Environ. Manage. 14: 212-137.

    Article  Google Scholar 

  • Cordell, C.E., Marx, D.H., and Caldweii, C., 1991, Operational application of specific ecto-mycorrhizal fungi in mineland reclamation. In: Proceedings of National Meeting of American Society on Surface Mining and Reclamation, Durango, Colorado, May 14-17.

    Google Scholar 

  • Coughlan, A.P., and Piché, Y., 2005, Cistus incanus root organ cultures: a valuable tool for studying mycorrhizal associations. In: In vitro culture of mycorrhizas, S., Declerck, D.-G., Strullu, and A., Fortin eds., Springer, Berlin/Heidelberg, Germany, Soil Biol. 4: pp. 235-252.

    Google Scholar 

  • Dalpé, Y., and Monreal, M., 2004, Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Online. Crop Manage. doi:10.1094/CM-2004-0301-09-RV.

    Google Scholar 

  • Danielson, R.M., and Visser, S., 1989, Host response to inoculation and behaviour of induced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Can. J. For. Res. 19: 1412-1421.

    Article  Google Scholar 

  • Donnelly, P.K., and Fletcher, J.S., 1994, Potential use of mycorrhizal fungi as bioremediation agents. In: Bioremediation through rhizosphere technology, T.A., Anderson, and J.R., Coats eds., ACS Symposium Series, American Chemical Society, Washington, DC, Vol. 563, pp. 93-99.

    Google Scholar 

  • Dunabeitia, M., Rodriguez, N., Salcedo, I., and Sarrionandia, E., 2004, Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque country. For. Ecol. Manage. 195: 129-139.

    Article  Google Scholar 

  • Enkhtuya, B., Rydolvá, J., and Vosátka, M., 2000, Effectiveness of indigenous and non-indegenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl. Soil Ecol. 14: 201-211.

    Article  Google Scholar 

  • Fortin, J.A., Bécard, G., Declerck, S., Dalpé, Y., St-Arnaud, M., Coughlan, A.P., and Piché, Y., 2002, Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80: 1-20.

    Article  CAS  Google Scholar 

  • Fung, M.Y.P., and Macyk, T.M., 2000, Reclamation of oil sand mining areas. In: Reclama-tion of drastically disturbed lands, R.I., Barnhisel, R.G., Darmody, and W.L., Daniels eds., American Society of Agronomy monographs, 2nd edition 41, pp. 755-744.

    Google Scholar 

  • Gadd, G.M., 1993, Interactions of fungi with toxic metals. New Phytol. 124: 25-60.

    Article  CAS  Google Scholar 

  • Gagné, A., Jany, J-L., Bousquet, J., and Khasa, D.P., 2006, Ectomycorrhizal fungal com-munities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Can. J. For. Res. 36: 1684-1694.

    Article  Google Scholar 

  • Galli, U., Schuepp, H. and Brunold, C., 1994, Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.

    Article  CAS  Google Scholar 

  • Gaur, A., and Adholeya, A., 2004, Prospect of arbuscular mycorrhizal fungi in phytore-mediation of heave metal contaminated soils. Curr. Sci. 86: 528-534.

    CAS  Google Scholar 

  • Gibson, B.R., and Mitchell, D.T., 2006, Sensitivity of ericoid mycorrhizal fungi and mycorrhizal Calluna vulgaris to copper mine spoil from Avoca County, Wicklow. Biol. Environ. Proc. Royal Irish Acad. 106B: 9-18.

    Article  Google Scholar 

  • Göhre, V., and Paszkowski, U., 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115-1122.

    Article  PubMed  Google Scholar 

  • Gould, A.B., Hendrix, J.W., and Richard, S.F., 1996, Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. 1. Propagule and spore population densities. Can. J. Bot. 74: 247-261.

    Article  Google Scholar 

  • Gramss, G., Kirsche, B., Voigt, B., Günther, T., and Fritsche, W., 1999, Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol. Res. 8: 1009-1018.

    Article  Google Scholar 

  • Hibbs, D.E., and Cromack, K., 1990, Actinorhizal plants in Pacific northwest forests. In: The biology of Frankia and actinorhizal plants, C.R. Schwintzer, and J.D. Tjepkema eds, Academic, London, pp. 343-364.

    Google Scholar 

  • Jany, J.L., Bousquet, J., and Khasa, D.P., 2003, Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mole. Ecol. 3: 659-661.

    Article  CAS  Google Scholar 

  • Jany, J.L., Bousquet, J., Gagné, A., and Khasa, D.P, 2006, Simple sequence repeat (SSR) markers in the ectomycorrhizal fungus Laccaria bicolor for environmental monitoring of introduced strains and molecular ecology applications. Mycol. Res. 110: 51-59.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M.D., and Hutchinson, T.C., 1986, The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442.

    Article  CAS  Google Scholar 

  • Jones, M.D., and Hutchinson, T.C., 1988, Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. I. Effects on growth, photo-systhesis, respiration and transpiration. New Phytol. 108: 451-459.

    Article  CAS  Google Scholar 

  • Kernaghan, G., Hambling, B., Fung, M., and Khasa, D.P., 2002, In vitro selection of Boreal ectomycorrhizal fungi for use in reclamation of saline-alkaline habitats. Restor. Ecol. 10: 1-9.

    Article  Google Scholar 

  • Kernaghan, G., Sigler, L., and Khasa, D.P., 2003, Mycorrhizal and root endophytic fungi of containerized Picea glauca seedling assessed by rDNA sequence analysis. Microb. Ecol. 45: 128-136.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A.G., 2006, Mycorrhizoremediation- an enhanced form of phytoremidiation. J Zhejiang. Univ. Science B 7: 503-514.

    Article  Google Scholar 

  • Khasa, D.P., Chakarvarty, P., Robertson, B., Thomas, R., and Danick, B.P., 2002, The mycor-rhizal status of selected poplar clones introduced in Alberta. Biomass Bioener. 22: 99-104.

    Article  Google Scholar 

  • Klironomos, J.N., 2003, Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292-2301.

    Article  Google Scholar 

  • Koomen, I., McGrath, S.P., and Giller, K.E., 1990, Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biol. Biochem. 22: 871-873.

    CAS  Google Scholar 

  • Kretzer, A.M., Molina, R., and Spatafora, J.W., 2000, Microsatellite markers for the ectomycorrhizal basiodiomycetes Rhizopogon vinicolor. Mole. Ecol. 9: 1190-1191.

    Article  CAS  Google Scholar 

  • Kretzer, A.M., Dunham, S., Molina, R., and Spatafora, J.W., 2003, Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161: 313-320.

    Article  Google Scholar 

  • Kropp, B.R., and Langlois, C.G., 1990, Ectomycorrhizae in reforestation. Can. J. For. Res. 20: 438-451.

    Article  Google Scholar 

  • Lacourt, I., D’Angelo, S., Girlanda, M., Turnau, K., Bonfante, P, and Perotto, S., 2000, Genetic polymorphism and metal sensitivity of Oidiodendron maius strains isolated from polluted soil. Annl. Microbiol. 50: 157-166.

    CAS  Google Scholar 

  • Lain, C., Hogetsu, T., Matsushita, N., Guerin-Laguette, A., Suzuki, K., and Yamada, A., 2003, Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza 13: 27-31.

    Google Scholar 

  • Le Tacon, F., Jung, G., Mugnier, J., Michelot, P., and Mauperin, C., 1985, Efficiency in a forest nursery of an ectomycorrhizal fungus inoculum produced in a fermentor and entrapped in polymeric gels. Can. J. Bot. 63: 1664-1668.

    Google Scholar 

  • Le Tacon, F., Alvarez, I.F., Bouchard, D., Henrion, B., Jackson, M.R., Luff, S., Parledé, I.J., Pera, J., Stenström, E., Volleneuve, N., and Walker, C., 1994, Variations in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Mycorrhizas in eco-systems, D.J. Read et al. eds., CAB, Wallingford, pp. 119-134.

    Google Scholar 

  • Leake, J.R., Shaw, G., and Read, D.J., 1990, The biology of mycorrhiza in the Ericaceae XVI. Mycorrhiza and iron uptake in Calluna vulgaris (L.) Hull in the presence of two calcium salts. New Phytol. 114: 651-657.

    Article  CAS  Google Scholar 

  • Malajczuk, N., Redell, P., and Brundrett, M., 1994, The role of ectomycorrhizal fungi in minesite reclamation. In: Mycorrhizae and plant health, F.L. Pfleger and R.G. Linderman eds., The American Phytopathological Society, St Paul, MN.

    Google Scholar 

  • Marx, D.H., 1991, The practical significance of ectomycorrhizae in forest establishment. In: Ecophysiology of ectomycorrhizae of forest trees, The Marcus Wallenberg Foundation ed., Stockholm, Sweden, Symposium Proceedings, 7, pp. 54-90.

    Google Scholar 

  • Marx, D.H., and Kenney, D.S., 1982, Production of ectomycorrhizal inoculum. In: Methods and principles of mycorrhizal research, N.C. Schenck ed., The American Phyto-pathological Society, St Paul, MN, pp. 131-146.

    Google Scholar 

  • Marx, D.H., Cordell, C.E., and Clark, IIIA, , 1988, Eight-year performance of loblolly pine with Pisolithus ectomycorrhizae on a good quality forest site. South. J. Am. For. 12: 275-280.

    Google Scholar 

  • Marx, D.H., Ruehle, J.L., and Cordell, C.E., 1991, Methods for studying nursery and field response of trees to specific ectomycorrhiza. In: Techniques for mycorrhizal research, J.R. Norris, D. Read, and A.K. Varma eds., Academic, California, pp. 384-411.

    Google Scholar 

  • Mauperin, C., Mortier, F., Garbaye, J., LeTacon, F., and Carr, G., 1987, Viability of an ecto-mycorrhizal inoculum produced in liquid medium and entrapped in a calcium alginate get. Can. J. Bot. 65: 2326-2329.

    Article  Google Scholar 

  • Meharg, A.A., and Cairney, J.W.G., 2000, Ectomycorrhizas- extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32: 1475-1484.

    Article  CAS  Google Scholar 

  • Miller, R.M., and Jastrow, J.D., 1992, The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Mycorrhizal functioning, M., Allen ed., Chapman & Hall, New York.

    Google Scholar 

  • Mitchell, D.T., and Gibson, B.R., 2006, Ericoid mycorrhizal association: ability to adapt to a broad range of habitats. Mycologist 20: 2-9.

    Article  Google Scholar 

  • Molina, R., and Trappe, J.M., 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For. Sci. 28: 423-458.

    Google Scholar 

  • Molina, R., and Trappe, J.M., 1984. Mycorrhiza management in bareroot nurseries. In: Forest nursery manual: production of bareroot seedlings. Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands.

    Google Scholar 

  • Moora, M., Opik, M., and Zobel, M., 2004, Performance of two Centaurea species in response to different root-associated microbial communities and to alterations in nutrient availability. Ann. Bot. Fennici. 41: 263-271.

    Google Scholar 

  • Moynahan, O.S., Zabinski, C.A., and Gannon, J.E., 2002, Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restor. Ecol. 10: 77-87.

    Article  Google Scholar 

  • Newsham, K.K., Fitter, A.H., and Watkinson, A.R., 1995, Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10: 407-411.

    Google Scholar 

  • Oliveira R.S., Vosátka, M., and Dodd, J.C., 2005, Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16: 23-31.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, U., Dunabeitia, M., Menendez, S., Gonzalez-Muria, C., and Majada, J., 2004, Effectiveness of mycorrhizal inoculation in the nursery on growth and water relation of Pinus radiate in different water regimes. Tree Physiol. 24: 64-73.

    Google Scholar 

  • Pera, J., Alvarez, I.F., Rincon, A.M., and Parlardé, J., 1999, Field performance in northern Spain of Douglas-fir seedlings inoculated with ectomycorrhizal fungi. Mycorrhiza 9: 77-84.

    Google Scholar 

  • Pérez-Moreno, J., and Read, D.J., 2000, Mobilization and transfer of nutrients from litter to tree

    Google Scholar 

  • Perry, D.A., Molina, R., and Amaranthus, M.P., 1987, Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can. J. For. Res. 17: 929-940.

    Article  Google Scholar 

  • Peterson, R.L., Massicotte, H.B., and Melville, L.H., 2004, Mycorrhizas: anatomy and cell biology. CABI, NRC Research Press, Ottawa, Canada, NRC Monographs, 173 pp.

    Google Scholar 

  • Quoreshi, A.M., 2003, Nutritional preconditioning and ectomycorrhizal formation of Picea marina (Mill.) B.S.P. seedlings. Eurasian J. For. Res. 6(1): 1-63.

    Google Scholar 

  • Quoreshi, A.M., and Timmer, V.R., 1998, Exponential fertilization increases nutrition and ectomycorrhizal development of black spruce seedling. Can. J. For. Res. 28: 674-682.

    Article  Google Scholar 

  • Quoreshi, A.M., Khasa, D.P., Bois, G., Jany, J.L., Begrand, E., McCurdy, D., and Fung, M., 2005, Mycorrhizal biotechnology for reclamation of oil sand composite tailings and tailings land in Alberta. In: The thin green line: a symposium on the state-of-the-art in reforestation proceedings, S.J., Colombo ed.,. Thin Green Line Symposium - Thunder Bay, Ontario, Ontario Forest Research Institute, Forest Research Information Paper No. 160, pp. 122-127.

    Google Scholar 

  • Quoreshi, A.M., Roy, S., Greer, C.W., Beaudin, J., McCurdy, D., and Khasa, D.P., 2007, Inoculation of green alder (Alnus crispa) with Frankia-ectomycorrhizal fungal inoculants under commercial nursery production conditions. Native Plants J. 8(3): 271-280.

    Article  Google Scholar 

  • Quoreshi, A.M., Kernanghan, G., and Hunt, G., 2008a, Mycorrhizal fungi in Canadian forest nurseries and the success of inoculated seedlings. NRC Monographs, Ottawa, Canada (in press).

    Google Scholar 

  • Quoreshi, A.M., Piché, Y., and Khasa, D.P., 2008b, Field performance of conifer and hard-wood species five years after nursery inoculation in the Canadian Prairie Provinces. New For. 35: 235-253.

    Google Scholar 

  • Rao, A.V., and Tak, R., 2002, Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone. J. Arid Environ. 51: 113-119.

    Article  Google Scholar 

  • Read, D.J., 1991, Mycorrhizas in ecosystems. Experimen. 47: 74-84.

    Google Scholar 

  • Read, D.J., 1992, The mycorrhizal fungal community with special reference to nutrient mobilization. In: The fungal community: it’s organization and role in the ecosystem, 2nd edition,G.C., Carrol, and D.T., Wicklow eds., Marcel Dekker, New York, pp. 631-652.

    Google Scholar 

  • Read, D.J., Leake, J.R., and Langdale, A.R., 1989, The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Nitrogen, phosphorus, and sulphur utilization by fungi, L. Boddy, R. Marchant, and D. J. Read eds., Cambridge University Press, England, pp. 181-204.

    Google Scholar 

  • Rowe, H.I., Brown, C.S., and Claassen, V.P., 2007, Comparisions of mycorrhizal res-ponsiveness with field soil and commercial inoculum for six native Montane species and Bromus tectorum. Restor. Ecol. 15: 44-52.

    Article  Google Scholar 

  • Sarand, I., Timonen, S., Koivula, T., Peltola, R., Haahtela, K., Sen, R., and Romantschuk, M., 1999, Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J. Appl. Microbiol. 86: 817-826.

    Article  CAS  PubMed  Google Scholar 

  • Sébastien R., Khasa, D.P., and Greer, C.W., 2007, Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can. J. Bot. 85: 237-251.

    Article  Google Scholar 

  • Sharma, S., and Dohroo, N.P., 1996, Vesicular-arbuscular mycorrhizae in plant health and disease management. Int. J. Trop. Plant Dis. 14: 147-155.

    Google Scholar 

  • Smith, S.M., and Read, D., 1997, Mycorrhizal symbiosis, 2nd edition, Academic, London.

    Google Scholar 

  • Stenstrom, E., Ek, M., and Unestam, T., 1990, Variation in field response of Pinus sylvestris to nursery inoculation with four different ectomycorrhizal fungi. Can. J. For. Res. 20: 1796-1803.

    Article  Google Scholar 

  • Sylvia, D.M., and Williams, S.E., 1992, Vesicular-arbuscular mycorrhizae and environmental stress. In: Mycorrhizae in sustainable agriculture, R.G., Linderman, and G.J., Bethlenfalvay eds., Special Publication No. 54, American Society of Agronomy Madison, WI, pp. 101-124.

    Google Scholar 

  • Trappe, J.M., 1977, Selection of fungi for ectomycorrhizal inoculation in nurseries. Ann. Rev. Phytopathol. 15: 203-222.

    Article  Google Scholar 

  • Ursic, M., Peterson, R.L., and Husband, B., 1997, Relative abundance of mycorrhizal fungi and frequency of root rot on Pinus strobus seedlings in a southern Ontario nursery. Can. J. For. Res. 27: 54-62.

    Article  Google Scholar 

  • Van den Driessche, R., 1991, Effects of nutrients on stock performance in the forest. In: Mineral nutrition of conifer seedlings. CRC, Boca Ration, FL/Ann Arbor, MI/Boston, MA, pp. 229-260.

    Google Scholar 

  • Villeneuve, N., LeTacon, F., and Bouchard, D., 1991, Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas-fir seedlings. Plant Soil 135: 95-107.

    Article  Google Scholar 

  • Yamanaka, T., Li, C.-Y., Bormann, B.T., and Okabe, H., 2002, Triplicate association in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254: 179-186.

    Article  Google Scholar 

  • Yu, T.E. J.-C., Egger, K.N., and Peterson, R.L., 2001, Ectoendomycorrhizal associations -characteristics and functions. Mycorrhiza 11: 167-177.

    Article  CAS  Google Scholar 

  • Zak, J.C., and Parkinson, D., 1983, Effect of surface emendations on vesicular-arbuscular mycorrhizal development of slender wheatgrass: a 4-year study. Can. J. Bot. 61: 798-803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Quoreshi, A.M. (2008). The Use of Mycorrhizal Biotechnology in Restoration of Disturbed Ecosystem. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_13

Download citation

Publish with us

Policies and ethics