Skip to main content

Signalling Pathways Controlling Fatty Acid Desaturation

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Microorganisms, plants and animals regulate the synthesis of unsaturated fatty acids (UFAs) during changing environmental conditions as well as in response to nutrients. Unsaturation of fatty acid chains has important structural roles in cell membranes: a proper ratio of saturated to UFAs contributes to membrane fluidity. Alterations in this ratio have been implicated in various disease states including cardiovascular diseases, immune disorders, cancer and obesity. They are also the major components of triglycerides and intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediates fever, inflammation and neurotransmission. UFAs homeostasis in many organisms is achieved by feedback regulation of fatty acid desaturases gene transcription. Here, we review recently discovered components and mechanisms of the regulatory machinery governing the transcription of fatty acid desaturases in bacteria, yeast and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, P.S., Cronan, J.E., Jr. and de Mendoza, D. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol, 180 (1998) 2194–2200.

    PubMed  CAS  Google Scholar 

  • Aguilar, P.S., Lopez, P. and de Mendoza, D. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol, 181 (1999) 7028–7033.

    PubMed  CAS  Google Scholar 

  • Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C. and de Mendoza, D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J, 20 (2001)1681–1691.

    Article  PubMed  CAS  Google Scholar 

  • Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shigeta, S., Ono, K. and Suzuki, O. Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem Biophys Res Commun, 255 (1999) 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Al-Fageeh, M.B. and Smales, C.M. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J, 397(2006) 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Albanesi, D., Mansilla, M.C. and de Mendoza, D. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol, 186 (2004) 2655–2663.

    Article  PubMed  CAS  Google Scholar 

  • Altabe, S.G., Aguilar, P., Caballero, G.M. and de Mendoza, D. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J Bacteriol, 185 (2003) 3228–3231.

    Article  PubMed  CAS  Google Scholar 

  • Beatty, A.L., Malloy, J.L. and Wright, J.R. Pseudomonas aeruginosa degrades pulmonary surfactant and increases conversion in vitro. Am J Respir Cell Mol Biol, 32 (2005)128–134.

    Article  PubMed  CAS  Google Scholar 

  • Beckering, C.L., Steil, L., Weber, M.H., Volker, U. and Marahiel, M.A. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol, 184 (2002) 6395–6402.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, K. The biological synthesis of unsaturated fatty acids. Biochem Soc Symp, 24 (1963) 1–16.

    PubMed  CAS  Google Scholar 

  • Bossie, M.A. and Martin, C.E. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J Bacteriol, 171 (1989) 6409–6413.

    PubMed  CAS  Google Scholar 

  • Brown, M.S. and Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A, 96 (1999) 11041–11048.

    Article  PubMed  CAS  Google Scholar 

  • Burr, G.O. The essential fatty acids fifty years ago. Prog Lipid Res, 20 (1981) xxvii–xxix.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S.D. and Jump, D.B. Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr, 14 (1994) 83–98.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P., Miyazaki, M., Socci, N.D., Hagge-Greenberg, A., Liedtke, W., Soukas, A.A., Sharma, R., Hudgins, L.C., Ntambi, J.M. and Friedman, J.M. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science, 297 (2002) 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Cronan, J.E., Jr. and Gelmann, E.P. An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J Biol Chem, 248 (1973) 1188–1195.

    PubMed  CAS  Google Scholar 

  • Cybulski, L.E., Albanesi, D., Mansilla, M.C., Altabe, S., Aguilar, P.S. and de Mendoza, D. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol, 45 (2002) 1379–1388.

    Article  PubMed  CAS  Google Scholar 

  • Cybulski, L.E., del Solar, G., Craig, P.O., Espinosa, M. and de Mendoza, D. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem, 279 (2004) 39340–39347.

    Article  PubMed  CAS  Google Scholar 

  • Chellappa, R., Kandasamy, P., Oh, C.S., Jiang, Y., Vemula, M. and Martin, C.E. The membrane proteins, Spt23p and Mga2p, play distinct roles in the activation of Saccharomyces cerevisiae OLE1 gene expression. Fatty acid-mediated regulation of Mga2p activity is independent of its proteolytic processing into a soluble transcription activator. J Biol Chem, 276 (2001) 43548–43556.

    Article  PubMed  CAS  Google Scholar 

  • Chin, J. and Chang, T.Y. Further characterization of a Chinese hamster ovary cell mutant requiring cholesterol and unsaturated fatty acid for growth. Biochemistry, 21 (1982) 3196–3202.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.P., Nakamura, M. and Clarke, S.D. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem, 274 (1999a) 37335–37339.

    Article  CAS  Google Scholar 

  • Cho, H.P., Nakamura, M.T. and Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem (1999b) 274, 471–477.

    Article  CAS  Google Scholar 

  • DeWillie, J.W. and S.J. Farmer. Postnatal dietary fat influences mRNAs involved in mylenation. Dev Neurosci.14 (1992) 61–68

    Article  Google Scholar 

  • Diaz, A.R., Mansilla, M.C., Vila, A.J. and de Mendoza, D. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J Biol Chem, 277 (2002) 48099–48106.

    Article  PubMed  CAS  Google Scholar 

  • Dobrosotskaya, I.Y., Seegmiller, A.C., Brown, M.S., Goldstein, J.L. and Rawson, R.B. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science, 296 (2002) 879–883.

    Article  PubMed  CAS  Google Scholar 

  • Enoch, H.G., Catala, A. and Strittmatter, P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem, 251 (1976) 5095–5103.

    PubMed  CAS  Google Scholar 

  • Ericsson, J., Usheva, A. and Edwards, P.A. YY1 is a negative regulator of transcription of three sterol regulatory element-binding protein-responsive genes. J Biol Chem, 274 (1999) 14508–14513.

    Article  PubMed  CAS  Google Scholar 

  • Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Liepvre, X., Berthelier-Lubrano, C., Spiegelman, B., Kim, J.B., Ferre, P. and Foufelle, F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol, 19 (1999) 3760–3768.

    PubMed  CAS  Google Scholar 

  • Forman, B.M., Chen, J. and Evans, R.M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci U S A, 94 (1997) 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, D., Yoshimoto, H., Sone, H., Harashima, S. and Tamai, Y. Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene, ATF1 and delta-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14 (1998), 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Fulco, A.J. The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. J Biol Chem, 244 (1969) 889–895.

    PubMed  CAS  Google Scholar 

  • Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294 (2001) 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J.L., DeBose-Boyd, R.A. and Brown, M.S. Protein sensors for membrane sterols. Cell, 124 (2006) 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C.I. and Martin, C.E. Fatty acid-responsive control of mRNA stability. Unsaturated fatty acid-induced degradation of the Saccharomyces OLE1 transcript. J Biol Chem, 271 (1996) 25801–25809.

    Article  PubMed  CAS  Google Scholar 

  • Grau, R. and de Mendoza, D. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol, 8 (1993) 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Hannah, V.C., Ou, J., Luong, A., Goldstein, J.L. and Brown, M.S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem, 276 (2001) 4365–4372.

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J.R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol, 57 (1995) 19–42.

    PubMed  CAS  Google Scholar 

  • Heird, W.C. and Lapillonne, A. The role of essential fatty acids in development. Annu Rev Nutr, 25 (2005) 549–571.

    Article  PubMed  CAS  Google Scholar 

  • Higashi, S. and Murata, N. An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol, 102 (1993) 1275–1278.

    PubMed  CAS  Google Scholar 

  • Hitchcock, A.L., Krebber, H., Frietze, S., Lin, A., Latterich, M. and Silver, P.A. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol Biol Cell, 12 (2001) 3226–3241.

    PubMed  CAS  Google Scholar 

  • Holloway, C.T. and Holloway, P.W. Stearyl coenzyme a desaturase activity in mouse liver microsomes of varying lipid composition. Arch Biochem Biophys, 167 (1975) 496–504.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H.D. and Jentsch, S. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell, 102 (2000) 577–586.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J.D., Goldstein, J.L. and Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109 (2002) 1125–1131.

    PubMed  CAS  Google Scholar 

  • Jeffcoat, R. and James, A.T. The control of stearoyl-CoA desaturase by dietary linoleic acid. FEBS Lett, 85 (1978) 114–118.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Vasconcelles, M.J., Wretzel, S., Light, A., Gilooly, L., McDaid, K., Oh, C.S., Martin, C.E. and Goldberg, M.A. Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression. Eukaryot Cell, 1 (2002) 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Vasconcelles, M.J., Wretzel, S., Light, A., Martin, C.E. and Goldberg, M.A. MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol, 21 (2001) 6161–6169.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B.H., Maher, M.A., Banz, W.J., Zemel, M.B., Whelan, J., Smith, P.J. and Moustaid, N. Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am J Physiol, 271 (1996) E44–49.

    PubMed  CAS  Google Scholar 

  • Kaestner, K.H., Ntambi, J.M., Kelly, T.J., Jr. and Lane, M.D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 264 (1989) 14755–14761.

    PubMed  CAS  Google Scholar 

  • Kandasamy, P., Vemula, M., Oh, C.S., Chellappa, R. and Martin, C.E. Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem, 279 (2004) 36586–36592.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev, 55 (1991) 288–302.

    PubMed  CAS  Google Scholar 

  • Kanesaki, Y., Suzuki, I., Allakhverdiev, S.I., Mikami, K. and Murata, N. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun, 290 (2002) 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Kanesaki, Y., Yamamoto, H., Paithoonrangsarid, K., Shoumskaya, M., Suzuki, I., Hayashi, H. and Murata, N. Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium Synechocystis sp. PCC 6803. Plant J, 49 (2007) 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.X. and Leaf, A. Antiarrhythmic effects of polyunsaturated fatty acids. Recent studies. Circulation, 94 (1996)1774–1780.

    PubMed  CAS  Google Scholar 

  • Kawashima, Y., Hanioka, N., Matsumura, M. and Kozuka, H. Induction of microsomal stearoyl-CoA desaturation by the administration of various peroxisome proliferators. Biochim Biophys Acta, 752 (1983) 259–264.

    PubMed  CAS  Google Scholar 

  • Kawashima, Y., Musoh, K. and Kozuka, H. Peroxisome proliferators enhance linoleic acid metabolism in rat liver. Increased biosynthesis of omega 6 polyunsaturated fatty acids. J Biol Chem, 265 (1990) 9170–9175.

    PubMed  CAS  Google Scholar 

  • Kim, H.I., Cha, J.Y., Kim, S.Y., Kim, J.W., Roh, K.J., Seong, J.K., Lee, N.T., Choi, K.Y., Kim, K.S. and Ahn, Y.H. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes, 51 (2002) 676–685.

    Article  PubMed  CAS  Google Scholar 

  • Klein, W., Weber, M.H. and Marahiel, M.A. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol, 181 (1999) 5341–5349.

    PubMed  CAS  Google Scholar 

  • Kwast, K.E., Burke, P.V. and Poyton, R.O. Oxygen sensing and the transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol, 201 (1998) 1177–1195.

    PubMed  CAS  Google Scholar 

  • Lindqvist, Y., Huang, W., Schneider, G. and Shanklin, J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. Embo J, 15 (1996) 4081–4092.

    PubMed  CAS  Google Scholar 

  • Lopez, C.S., Heras, H., Garda, H., Ruzal, S., Sanchez-Rivas, C. and Rivas, E. Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol, 55 (2000) 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Los, D.A. and Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta, 1666 (2004) 142–157.

    PubMed  CAS  Google Scholar 

  • Los, D., Horvath, I., Vigh, L. and Murata, N. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett, 318 (1993) 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Los, D.A., Ray, M.K. and Murata, N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol, 25 (1997) 1167–1175.

    Article  PubMed  CAS  Google Scholar 

  • Magana, M.M., Lin, S.S., Dooley, K.A. and Osborne, T.F. Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res, 38 (1997) 1630–1638.

    PubMed  CAS  Google Scholar 

  • Man, W.C., Miyazaki, M., Chu, K. and Ntambi, J.M. Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem, 281 (2006) 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  • Mansilla, M.C. and de Mendoza, D. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol, 183 (2005) 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Mansilla, M.C., Cybulski, L.E., Albanesi, D. and de Mendoza, D. Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol, 186 (2004) 6681–6688.

    Article  PubMed  CAS  Google Scholar 

  • Marrakchi, H., Choi, K.H. and Rock, C.O. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem, 277 (2002) 44809–44816.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C.E., Oh, C.S. and Jiang, Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta, 1771 (2007) 271–285.

    PubMed  CAS  Google Scholar 

  • Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Yoshikawa, T., Hasty, A.H., Tamura, Y., Osuga, J., Okazaki, H., Iizuka, Y., Takahashi, A., Sone, H., Gotoda, T., Ishibashi, S. and Yamada, N. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res, 43 (2002) 107–114.

    PubMed  CAS  Google Scholar 

  • McDonough, V.M., Stukey, J.E. and Martin, C.E. Specificity of unsaturated fatty acid-regulated expression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem, 267 (1992) 5931–5936.

    PubMed  CAS  Google Scholar 

  • Mihara, K. Structure and regulation of rat liver microsomal stearoyl-CoA desaturase gene. J Biochem, 108 (1990) 1022–1029.

    PubMed  CAS  Google Scholar 

  • Mikami, K., Kanesaki, Y., Suzuki, I. and Murata, N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol, 46 (2002) 905–915.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C.W. and Ntambi, J.M. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci U S A, 93 (1996) 9443–9448.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, M., Kim, Y.C., Gray-Keller, M.P., Attie, A.D. and Ntambi, J.M. The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem, 275 (2000) 30132–30138.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, M., Man, W.C. and Ntambi, J.M. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr, 131 (2001) 2260–2268.

    PubMed  CAS  Google Scholar 

  • Murata, N. and Wada, H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J, 308 ( Pt 1) (1995) 1–8.

    PubMed  CAS  Google Scholar 

  • Murata, N. and Suzuki, I. Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot, 57, (2006) 235–247.

    Article  PubMed  CAS  Google Scholar 

  • Mustardy, L., Los, D.A., Gombos, Z. and Murata, N. Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation. Proc Natl Acad Sci U S A, 93 (1996) 10524–10527.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Sugioka, S., Kaneko, Y. and Harashima, S. O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol, 183 (2001) 745–751.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Sakumoto, N., Kaneko, Y. and Harashima, S. Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 291 (2002) 707–713.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M.T. and Nara, T.Y. Gene regulation of mammalian desaturases. Biochem Soc Trans, 30 (2002) 1076–1079.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M.T. and Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr, 24 (2004) 345–376.

    Article  PubMed  CAS  Google Scholar 

  • Napier, J.A., Hey, S.J., Lacey, D.J. and Shewry, P.R. Identification of a Caenorhabditis elegans delta6-fatty-acid-desaturase by heterologous expression in Saccharomyces cerevisiae. Biochem J, 330 (Pt 2) (1998) 611–614.

    PubMed  CAS  Google Scholar 

  • Nara, T.Y., He, W.S., Tang, C., Clarke, S.D. and Nakamura, M.T. The E-box like sterol regulatory element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty acids. Biochem Biophys Res Commun, 296 (2002) 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft, A., Yabe, D., Goldstein, J.L., Brown, M.S. and Espenshade, P.J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 102 (2000) 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem, 267 (1992) 10925–10930.

    PubMed  CAS  Google Scholar 

  • Ntambi, J.M. The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res, 34 (1995) 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res, 40 (1999) 1549–1558.

    PubMed  CAS  Google Scholar 

  • Ntambi, J.M. and Miyazaki, M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol, 14 (2003) 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M., Sessler, A.M. and Takova, T. A model cell line to study regulation of stearoyl-CoA desaturase gene 1 expression by insulin and polyunsaturated fatty acids. Biochem Biophys Res Commun, 220 (1996) 990–995.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi, J.M., Buhrow, S.A., Kaestner, K.H., Christy, R.J., Sibley, E., Kelly, T.J., Jr. and Lane, M.D. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 263 (1988) 17291–17300.

    PubMed  CAS  Google Scholar 

  • Ntambi, J.M., Choi, Y., Park, Y., Peters, J.M. and Pariza, M.W. Effects of conjugated linoleic acid (CLA) on immune responses, body composition and stearoyl-CoA desaturase. Can J Appl Physiol, 27 (2002a) 617–628.

    CAS  Google Scholar 

  • Ntambi, J.M., Miyazaki, M., Stoehr, J.P., Lan, H., Kendziorski, C.M., Yandell, B.S., Song, Y., Cohen, P., Friedman, J.M. and Attie, A.D. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A, 99 (2002b) 11482–11486.

    Article  CAS  Google Scholar 

  • Ohlrogge, J. and Browse, J. Lipid biosynthesis. Plant Cell, 7 (1995) 957–970.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, S.L., Leonard, A.E. and Mukerji, P. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids, 68 (2003) 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Phadtare, S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol, 6 (2004) 125–136.

    PubMed  CAS  Google Scholar 

  • Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G.S., Baulard, A.R., Slayden, R.A., DeBarber, A.E., Barry, C.E., 3rd, Baird, M.S., Crick, D.C. and Brennan, P.J. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J Biol Chem, 278 (2003) 53123–53130.

    Article  PubMed  CAS  Google Scholar 

  • Phinney, S.D. British radiation study. Science, 248 (1990) 1595.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A.S., Nuccio, M.L., Gross, L.M. and Thomas, T.L. Isolation of a delta 6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol Biol, 22 (1993) 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Rimoldi, O.J., Finarelli, G.S. and Brenner, R.R. Effects of diabetes and insulin on hepatic delta6 desaturase gene expression. Biochem Biophys Res Commun, 283 (2001) 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T. and Bryant, D.A. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol Microbiol, 23 (1997)1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T., Los, D.A., Higashi, S., Wada, H., Nishida, I., Ohmori, M. and Murata, N. Cloning of omega 3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol, 26 (1994a) 249–263.

    Article  CAS  Google Scholar 

  • Sakamoto, T., Wada, H., Nishida, I., Ohmori, M. and Murata, N. delta 9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. J Biol Chem, 269 (1994b) 25576–25580.

    CAS  Google Scholar 

  • Sampath, H. and Ntambi, J.M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr, 25 (2005) 317–340.

    Article  PubMed  CAS  Google Scholar 

  • Schoonjans, K., Staels, B. and Auwerx, J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res, 37 (1996) 907–925.

    PubMed  CAS  Google Scholar 

  • Schwartz, J. Role of polyunsaturated fatty acids in lung disease. Am J Clin Nutr, 71 (2000) 393S–396S.

    PubMed  CAS  Google Scholar 

  • Sessler, A.M. and Ntambi, J.M. Polyunsaturated fatty acid regulation of gene expression. J Nutr, 128 (1998) 923–926.

    PubMed  CAS  Google Scholar 

  • Shanklin, J. and Cahoon, E.B. Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol, 49 (1998) 611–641.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin, J., Whittle, E. and Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 33 (1994) 12787–12794.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, I., Bashmakov, Y., Shimano, H., Horton, J.D., Goldstein, J.L. and Brown, M.S. Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proc Natl Acad Sci U S A, 94 (1997) 12354–12359.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, I., Bashmakov, Y. and Horton, J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem, 274 (1999) 30028–30032.

    Article  PubMed  CAS  Google Scholar 

  • Shoumskaya, M.A., Paithoonrangsarid, K., Kanesaki, Y., Los, D.A., Zinchenko, V.V., Tanticharoen, M., Suzuki, I. and Murata, N. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in synechocystis. J Biol Chem, 280 (2005) 21531–21538.

    Article  PubMed  CAS  Google Scholar 

  • Singh A., and Ward OP. Microbial production of docosahexaenoic acid (DHA, C22:6). Adv Appl Microbiol, 45 (1997) 271–312.

    Article  PubMed  CAS  Google Scholar 

  • Skerrett, P.J. and Hennekens, C.H. Consumption of fish and fish oils and decreased risk of stroke. Prev Cardiol, 6 (2003) 38–41.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, P., Ternes, P., Zank, T.K. and Heinz, E. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids, 68 (2003) 73–95.

    Article  PubMed  CAS  Google Scholar 

  • Stukey, J.E., McDonough, V.M. and Martin, C.E. The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem, 265 (1990)20144–20149.

    PubMed  CAS  Google Scholar 

  • Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K. and Murata, N. The pathway for perception and transduction of low-temperature signals in Synechocystis. Embo J, 19 (2000) 1327–1334.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, D.E., Kim, J.B., Spiegelman, B.M. and Edwards, P.A. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J Biol Chem, 274 (1999) 20603–20610.

    Article  PubMed  CAS  Google Scholar 

  • Thijssen, M.A. and Mensink, R.P. Fatty acids and atherosclerotic risk. Handb Exp Pharmacol. (2005)165–194.

    Google Scholar 

  • Tocher, D.R., Leaver, M.J. and Hodgson, P.A. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog Lipid Res, 37 (1998) 73–117.

    Article  PubMed  CAS  Google Scholar 

  • Towle, H.C., Kaytor, E.N. and Shih, H.M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr, 17 (1997) 405–433.

    Article  PubMed  CAS  Google Scholar 

  • Uttaro, A.D. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life, 58 (2006) 563–571.

    Article  PubMed  CAS  Google Scholar 

  • van Beilen, J.B., Wubbolts, M.G. and Witholt, B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation, 5 (1994) 161–174.

    Article  PubMed  Google Scholar 

  • Vasconcelles, M.J., Jiang, Y., McDaid, K., Gilooly, L., Wretzel, S., Porter, D.L., Martin, C.E. and Goldberg, M.A. Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem, 276 (2001) 14374–14384.

    PubMed  CAS  Google Scholar 

  • Vemula, M., Kandasamy, P., Oh, C.S., Chellappa, R., Gonzalez, C.I. and Martin, C.E. Maintenance and regulation of mRNA stability of the Saccharomyces cerevisiae OLE1 gene requires multiple elements within the transcript that act through translation-independent mechanisms. J Biol Chem, 278 (2003) 45269–45279.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, J.G. and Browse, J. The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys, 365 (1999) 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Waters, K.M. and Ntambi, J.M. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J Biol Chem, 269 (1994) 27773–27777.

    PubMed  CAS  Google Scholar 

  • Waters, K.M., Miller, C.W. and Ntambi, J.M. Localization of a polyunsaturated fatty acid response region in stearoyl-CoA desaturase gene 1. Biochim Biophys Acta, 1349 (1997) 33–42.

    PubMed  CAS  Google Scholar 

  • Willson, T.M., Lambert, M.H. and Kliewer, S.A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem, 70 (2001) 341–367.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Nakamura, M.T., Cho, H.P. and Clarke, S.D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J Biol Chem, 274,(1999) 23577–23583.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T. and Clarke, S.D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem, 276 (2001) 9800–9807.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T., Amemiya-Kudo, M., Matsuzaka, T., Nakakuki, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Takahashi, A., Sone, H., Osuga Ji, J., Gotoda, T., Ishibashi, S. and Yamada, N. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem, 277 (2002) 1705–1711.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Ide, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Matsuzaka, T., Yatoh, S., Kitamine, T., Okazaki, H., Tamura, Y., Sekiya, M., Takahashi, A., Hasty, A.H., Sato, R., Sone, H., Osuga, J., Ishibashi, S. and Yamada, N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol, 17 (2003) 1240–1254.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Ge, L., Parimoo, S., Stenn, K. and Prouty, S.M. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J, 340 (Pt 1) (1999a) 255–264.

    Article  CAS  Google Scholar 

  • Zhang, L., Ge, L., Tran, T., Stenn, K. and Prouty, S.M. Isolation and characterization of the human stearoyl-CoA desaturase gene promoter: requirement of a conserved CCAAT cis-element. Biochem J, 357 (2001) 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Skalsky, Y. and Garfinkel, D.J. MGA2 or SPT23 is required for transcription of the delta9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics, 151 (1999b) 473–483.

    CAS  Google Scholar 

  • Zhang, Y.M., Zhu, K., Frank, M.W. and Rock, C.O. A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol Microbiol, 66 (2007) 622–632.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, K., Choi, K.H., Schweizer, H.P., Rock, C.O. and Zhang, Y.M. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol, 60 (2006) 260–273.

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghari, R., Cifelli, C.J., Banta, M.D. and Ross, A.C. Fatty acid delta(5)-desaturase mRNA is regulated by dietary vitamin A and exogenous retinoic acid in liver of adult rats. Arch Biochem Biophys, 391 (2001) 8–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mansilla, M.C., Banchio, C.E., de Mendoza, D. (2008). Signalling Pathways Controlling Fatty Acid Desaturation. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_3

Download citation

Publish with us

Policies and ethics