Skip to main content

Electrochemistry of Drug Release

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

Rate-controlled drug delivery pumps, particularly those at the microscale, can provide exquisite control of released drug profiles and thus closely approach the goal of maintaining the therapeutic drug concentration over the entire duration of treatment. This is in contrast to oral or topical routes that, while both convenient and noninvasive, are not suitable routes for many novel pharmaceutical agents including biologics, biosimilars, and other small molecules. Pumps have been prescribed for acute and chronic conditions including cancer, chronic pain, spasticity, and diabetes. Uses include the administration of antibiotics, chemotherapy, analgesics and opioids, nutrition formulas, insulin, lipids, vasopressors, blood products, and other drugs for which controlled rate of delivery is required [1]. The ability to modulate delivery rate is significant and allows for the design of new treatments that better synchronize with the dynamic biological processes occurring within...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham A, Holohan T (1994) External and implantable infusion pumps. Agency for Health Care Policy and Research, Rockville

    Google Scholar 

  2. Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw-Hill, Boston

    Google Scholar 

  3. Madou M (1997) Fundamentals of microfabrication. CRC Press, Boca Raton

    Google Scholar 

  4. Meng E (2010) Biomedical microsystems. CRC Press, Boca Raton

    Google Scholar 

  5. Ziaie B, Baldi A, Lei M, Gu YD, Siegel RA (2004) Hard and soft micromachining for biomems: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172

    CAS  Google Scholar 

  6. Grayson ACR, Shawgo RS, Li YW, Cima MJ (2004) Electronic MEMS for triggered delivery. Adv Drug Deliv Rev 56:173–184

    Google Scholar 

  7. Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56:185–198

    Google Scholar 

  8. Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55:315–328

    CAS  Google Scholar 

  9. Nuxoll EE, Siegel RA (2009) Biomems devices for drug delivery improved therapy by design. Ieee Eng Med Biol Mag 28:31–39

    Google Scholar 

  10. Tsai NC, Sue CY (2007) Review of MEMS-based drug delivery and dosing systems. Sens Actuators a-Phys 134:555–564

    CAS  Google Scholar 

  11. Deo S, Moschou E, Peteu S, Eisenhardt P, Bachas L, Madou M, Daunert S (2003) Responsive drug delivery systems. Anal Chem 75:207A–213A

    Google Scholar 

  12. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587

    CAS  Google Scholar 

  13. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK (2009) Microneedle-based vaccines. Curr Top Microbiol Immunol 333:369–393

    CAS  Google Scholar 

  14. Döring C, Grauer T, Marek J, Mettner MS, Trah H-P, Willmann M (1992) Micromachined thermoelectrically driven cantilever structures for fluid jet deflection. Paper presented at MEMS ’92, Travemünde, 4-7 February 1992

    Google Scholar 

  15. Jerman H (1990) Electrically-activated, micromachined diaphragm valves. Paper presented at the 1990 solid state sensor and actuator workshop, Hilton Head Island, 4-7 June 1990

    Google Scholar 

  16. Kohl M, Skrobanek KD (1998) Linear microactuators based on the shape memory effect. Sens Actuators A 70:104–111

    CAS  Google Scholar 

  17. Reynaerts D, Peirs J, VanBrussel H (1997) An implantable drug-delivery system based on shape memory alloy micro-actuation. Sens Actuators a-Phys 61:455–462

    CAS  Google Scholar 

  18. Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromechan Syst 7:245–251

    CAS  Google Scholar 

  19. Esashi M, Shoji S, Nakano A (1989) Normally closed microvalve and micropump fabricated on a silicon wafer. Sens Actuators A 20:163–169

    Google Scholar 

  20. Mescher M, Abe T, Brunett B, Metla H, Schlesinger TE, Reed M (1995) Piezoelectric lead-zirconate-titanate actuator films for microelectromechanical system applications. Paper presented at the MEMS ’95, Amsterdam, 29 January - 2 February 1995

    Google Scholar 

  21. Maillefer D, van Lintel H, Rey-Mermet G, Hirschi R (1999) A high-performance silicon micropump for an implantable drug delivery system. Paper presented at the MEMS ’99, Orlando, 17-21 January 1999

    Google Scholar 

  22. Cao L, Mantell S, Polla D (2001) Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens Actuators a-Phys 94:117–125

    CAS  Google Scholar 

  23. Su GG, Pidaparti RM (2010) Drug particle delivery investigation through a valveless micropump. J Microelectromech Syst 19:1390–1399

    Google Scholar 

  24. Su GG, Pidaparti RM (2010) Transport of drug particles in micropumps through novel actuation. Microsyst Technol-Micro- Nanosyst-Inform Storage Process Syst 16:595–606

    Google Scholar 

  25. Branebjerg J, Gravesen P (1992) A new electrostatic actuator providing improved stroke length and force. Paper presented at the MEMS ’92, Travemünde, 4-7 February 1992

    Google Scholar 

  26. Sato K, Shikida M (1992) Electrostatic film actuator with a large vertical displacement. Paper presented at the MEMS ’92, Travemünde, 4-7 February 1992

    Google Scholar 

  27. Bourouina T, Bosseboeuf A, Grandchamp JP (1997) Design and simulation of an electrostatic micropump for drug-delivery applications. J Micromechan Microengin 7:186–188

    CAS  Google Scholar 

  28. Yih TC, Wei C, Hammad B (2005) Modeling and characterization of a nanoliter drug-delivery mems micropump with circular bossed membrane. Nanomedicine 1:164–175

    CAS  Google Scholar 

  29. Teymoori MM, Abbaspour-Sani E (2005) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators a-Phys 117:222–229

    CAS  Google Scholar 

  30. Grosjean C, Yang X, Tai Y-C (1999) A practical thermopneumatic valve. In: (ed) MEMS ’99, Orlando, 17-21 January 1999

    Google Scholar 

  31. Jeong OC, Tang SS (2000) Fabrication of a thermopneumatic microactuator with a corrugated p + silicon diaphragm. Sens Actuators A 80:62–67

    Google Scholar 

  32. Faraday M (1834) On electrical decomposition. Philos Trans 124:77–122

    Google Scholar 

  33. Nicholson W (1800) Account of the new electrical or galvanic apparatus of sig. Alex. Volta, and experiments performed with the same. J Nat Philos Chem Arts 4:179–187

    Google Scholar 

  34. Cameron CG, Freund MS (2002) Electrolytic actuators: alternative, high-performance, material-based devices. Proc Nat Acad Sci USA 99:7827–7831

    CAS  Google Scholar 

  35. Neagu C, Jansen H, Gardeniers H, Elwenspoek M (2000) The electrolysis of water: an actuation principle for mems with a big opportunity. Mechatronics 10:571–581

    Google Scholar 

  36. Neagu CR, Gardeniers JGE, Elwenspoek M, Kelly JJ (1996) An electrochemical microactuator: principle and first results. J Microelectromechan Syst 5:2–9

    CAS  Google Scholar 

  37. Stanczyk T, Ilic B, Hesketh PJ, Boyd JG (2000) A microfabricated electrochemical actuator for large displacements. J Microelectromechan Syst 9:314–320

    Google Scholar 

  38. Pang C, Tai YC, Burdick JW, Andersen RA (2006) Electrolysis-based diaphragm actuators. Nanotechnology 17:S64–S68

    CAS  Google Scholar 

  39. Bohm S, Timmer B, Olthuis W, Bergveld P (2000) A closed-loop controlled electrochemically actuated micro-dosing system. J Micromechan Microeng 10:498–504

    CAS  Google Scholar 

  40. Suzuki H, Yoneyama R (2002) A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption. Sens Actuators B-Chem 86:242–250

    CAS  Google Scholar 

  41. Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B-Chem 96:38–45

    CAS  Google Scholar 

  42. Bohm S, Olthuis W, Bergveld P (1999) An integrated micromachined electrochemical pump and dosing system. Biomed Microdevices 1:121–130

    CAS  Google Scholar 

  43. Meng E, Shih J, Li P-Y, Lo R, Humayun M, Tai Y-C (2006) Electrolysis-driven drug delivery for treatment of ocular disease. Paper presented at the Micro total analysis systems 2006, Tokyo, 5-9 November 2006

    Google Scholar 

  44. Li PY, Shih J, Lo R, Saati S, Agrawal R, Humayun MS, Tai YC, Meng E (2008) An electrochemical intraocular drug delivery device. Sens Actuators A-Phys 143:41–48

    CAS  Google Scholar 

  45. Gensler H, Sheybani R, Li PY, Lo R, Zhu S, Yong K-T, Roy I, Prasad PN, Masood R, Sinha UK, Meng E (2010) Implantable mems drug delivery devices for cancer radiation reduction. Paper presented at the MEMS 2010, Hong Kong, 24-28 January 2010

    Google Scholar 

  46. Sheybani R, Meng E (2011) High efficiency wireless electrochemical actuators: design, fabrication and characterization by electrochemical impedance spectroscopy. Paper presented at the MEMS 2011, Cancun, 23-27 January 2011

    Google Scholar 

  47. Sheybani R, Gensler H, Meng E (2011) Rapid and repeatable bolus drug delivery enabled by high efficiency electrochemical bellows actuators. Paper presented at the Transducers 2011, Beijing, 5-9 June 2011

    Google Scholar 

  48. Young DB, Jackson TE, Pearce DH, Guyton AC (1977) A portable infusion pump for use on large laboratory animals. IEEE Trans Biomed Eng 24:543–545

    CAS  Google Scholar 

  49. Nalecz M, Lewandowski J, Werynski A, Zawicki I (1978) Bioengineering aspects of the artificial pancreas. Artif Organs 2:305–309

    CAS  Google Scholar 

  50. Janocha H (1988) Neue aktoren. Proc Actuator 88:389

    Google Scholar 

  51. O’Keefe D, Oherlihy C, Gross Y, Kelly JG (1994) Patient-controlled analgesia using a miniature electrochemically driven infusion-pump. Br J Anaesth 73:843–846

    Google Scholar 

  52. Groning R (1997) Computer-controlled drug release from small-sized dosage forms. J Control Release 48:185–193

    CAS  Google Scholar 

  53. Kim HC, Bae YH, Kim SW (1999) Innovative ambulatory drug delivery system using an electrolytic hydrogel infusion pump. IEEE Trans Biomed Eng 46:663–669

    CAS  Google Scholar 

  54. Xie J, Miao YN, Shih J, He Q, Liu J, Tai YC, Lee TD (2004) An electrochemical pumping system for on-chip gradient generation. Anal Chem 76:3756–3763

    CAS  Google Scholar 

  55. Gutierrez C, Sheybani R, Meng E (2011) Electrochemically-based dose measurement for closed-loop drug delivery applications. Paper presented at the Transducers 2011, Beijing, 5-9 June 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellis Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Meng, E., Hoang, T. (2014). Electrochemistry of Drug Release. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_264

Download citation

Publish with us

Policies and ethics