Skip to main content

SiO2 Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter focuses on one of the most studied aerogel materials, silica aerogels. It aims at presenting a brief overview of the elaboration steps (sol–gel synthesis, aging, and drying), the textural and chemical characteristics (aggregation features, porosity, and surface chemistry), the main physical properties (from thermal, mechanical, acoustical, and optical, to biological, medical, etc.), and a rather broad panel of related potential applications of these fascinating nanostructured materials. It cannot be considered as an exhaustive synopsis but must be used as a simple tool to initiate further bibliographic studies on silica aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinker CJ, Scherer GW (1990) Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing. Academic Press, New-York

    Google Scholar 

  2. Pierre AC (1998) Introduction to Sol-Gel Processing Kluwer, Boston

    Google Scholar 

  3. Soleimani DA, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Proc Technol 199:10–26

    Article  CAS  Google Scholar 

  4. Pierre AC, Pajonk GM (2002) Aerogels and their applications. Chem Rev 102:4243–4265

    Article  CAS  Google Scholar 

  5. Ambekar AP, Bagade P (2006) A review on: 'aerogel - world's lightest solid'. Popular Plastics & Packaging, 51:96–102

    CAS  Google Scholar 

  6. Kocon L, Phalippou J (2005) Aerogels. Material aspect Techniques de l'Ingenieur, Sciences Fondamentales, AF196:AF3610/1-AF3610/21

    Google Scholar 

  7. Carraher CE Jr (2005) General topics: silica aerogels-properties and uses. Polymer News, 30(12), 386–388

    Article  CAS  Google Scholar 

  8. Carraher CE Jr (2005) Silica aerogels - synthesis and history. Polymer News, 30:62–64

    Article  CAS  Google Scholar 

  9. Pajonk GM (2003) Some applications of silica aerogels. Colloid and Polymer Science, 281:637–651

    Article  CAS  Google Scholar 

  10. Akimov YK (2003) Fields of Application of Aerogels (Review) Instruments and Experimental Techniques (Translation of Pribory i Tekhnika Eksperimenta), 46:287–299

    Google Scholar 

  11. Venkateswara Rao A, Parvathy Rao A, Kulkarni MM (2004) Influence of gel aging and Na2SiO3/H2O molar ratio on monolithicity and physical properties of water–glass-based aerogels dried at atmospheric pressure. J Non-Cryst Solids 350:224–229

    Article  CAS  Google Scholar 

  12. Hwang S-W, Jung H-H, Hyun S-H, Ahn Y-S (2007) Effective preparation of crack-free silica aerogels via ambient drying. J Sol Gel Sci Technol 41, 139–146

    Article  CAS  Google Scholar 

  13. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  14. Lee CJ, Kim GS, Hyun SH (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. J Mater Sci 37:2237–2241

    Article  CAS  Google Scholar 

  15. Tang Q, Wang T (2005) Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J Supercrit Fluids 35:91–94

    Article  CAS  Google Scholar 

  16. Li T, Wang T (2008) Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Materials Chemistry and Physics 112:398–401

    Article  CAS  Google Scholar 

  17. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1998) Structure Design of Double-Pore Silica and Its Application to HPLC. J Sol Gel Sci Technol 13:163–169

    Article  CAS  Google Scholar 

  18. Wagh PB, Begag R, Pajonk GM, Venkasteswara Rao A., Haranath D (1999) Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater Chem Phys 57:214–218

    Article  CAS  Google Scholar 

  19. Ebelmen M (1846) Recherches sur les combinaisons des acides borique et silicique avec les éthers. Ann Chim Phys 16:129–166; (1847) Sur l'hyalite artificielle et l'hydrphane. C R Acad Sci Paris 25:854–856

    Google Scholar 

  20. Einarsrud MA, Nilsen E, Rigacci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier P, Nitz P, Ehrburger-Dolle F (2001) Strengthening of silica gels and aerogels by washing and aging processes J. Non-Cryst. Solids 285:1–7

    Article  CAS  Google Scholar 

  21. Deng Z, Wang J, Wei J, Shen J, Zhou B, Chen L (2000) Physical Properties of Silica Aerogels Prepared with Polyethoxydisiloxane. J Sol Gel Sci Technol 19:677–680

    Article  CAS  Google Scholar 

  22. Venkastewara Rao A, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285

    Article  CAS  Google Scholar 

  23. El Rassy H, Buisson P, Bouali B, Perrard A, Pierre AC (2003) Surface Characterization of Silica aerogels with Different Proportions of Hydrophobic Groups, dried by the CO2 Supercritical Method; Langmuir, 19:358–363

    Google Scholar 

  24. Harreld JH, Ebina T, Tsubo N, Stucky G (2002) Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions. J Non-Cryst Solids 298:241–251

    Article  CAS  Google Scholar 

  25. Allié C, Pirard R, Lecloux AJ, Pirard JP (1999) Preparation of low-density xerogels through additives to TEOS-based alcogels. J Non-Cryst Solids 246:216–228

    Article  Google Scholar 

  26. Rodriguez SA, Colon LA (1999) Investigations of a sol–gel derived stationary phase for open tubular capillary electrochromatography. Anal Chim Acta 397:207–215

    Article  CAS  Google Scholar 

  27. Venkateswara Rao A, Haranath D (1999) Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous Mesoporous Mater 30:267–273

    Article  Google Scholar 

  28. Zhou B, Shen J, Yuehua W, Wu G, Ni X (2007) Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater Sci Eng C 27:1291–1294

    Article  CAS  Google Scholar 

  29. Pauling L (1960) The Nature of Chemical Bonds, 3rd ed. Cornell University Press, USA

    Google Scholar 

  30. Mozzi RL, Warren BE (1969) Structure of vitreous silica. J Appl Cryst 2:164–172

    Article  CAS  Google Scholar 

  31. de la Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) Structural study of silica sonogels. J Non-Cryst Solids 121:211–215

    Article  Google Scholar 

  32. Vollet DR, Nunes LM, Donatti DA, Ibanez Ruiz A, Maceti H (2008) Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS. J Non-Cryst Solids 354:1467–1474

    Article  CAS  Google Scholar 

  33. Livage J, Henry M, Sanchez C (1988) Sol-Gel Chemistry of Transition Metal Oxides. Prog. Solid State Chem.18:259–341

    Article  CAS  Google Scholar 

  34. Nicolaon GA, Teichner SJ (1968) Preparation of silica aerogels from methyl orthosilicate in alcoholic medium, and their properties. Bull Soc Chim Fr 1906–1911

    Google Scholar 

  35. Moner-Girona M, Roig A, Molins E (2003) Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents. J Sol Gel Sci Technol 26:645–649

    Article  CAS  Google Scholar 

  36. Mezza P, Phalippou J, Sempere R (1999) Sol–gel derived porous silica films. J Non-Cryst Solids 243:75–79

    Article  CAS  Google Scholar 

  37. Dieudonne P, Hafidi Alaoui A, Delord P, Phalippou J (2000) Transformation of nanostructure of silica gels during drying. J Non-Cryst Solids 262:155–161

    Article  CAS  Google Scholar 

  38. Suh DJ, Park TJ, Sonn JH, Lim JC (1999) Effect of aging on the porous texture of silica aerogels prepared by NH4OH and NH4F catalyzed sol-gel process. J Mater Sci Lett 18:1473–1475

    Article  CAS  Google Scholar 

  39. Boonstra AH, Bernards TNM (1988) The dependence of the gelation time on the hydrolysis time in a two-step SiO2 sol-gel process. J Non-Cryst Solids 105:207–213

    Article  CAS  Google Scholar 

  40. Kocon L, Despetis F, Phalippou J (1998) Ultralow density silica aerogels by alcohol supercritical drying. J Non-Cryst Solids 225:96–100

    Article  CAS  Google Scholar 

  41. Begag R, Pajonk GM, Elaloui E, Chevalier B (1999) Synthesis and properties of some monolithic silica carbogels produced from polyethoxydisiloxanes dissolved in ethylacetoacetate and acid catalysis. Materials Chemistry and Physics 58:256–263

    Article  CAS  Google Scholar 

  42. Dai S, Ju YH, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 243–244

    Google Scholar 

  43. Karout A, Pierre AC (2009) Influence of ionic liquids on the texture of silica aerogels. J Sol Gel Sci Technol 49:364–372

    Article  CAS  Google Scholar 

  44. Karout A, Pierre AC (2007), Silica xerogels and aerogels synthesized with ionic liquids, J. Non-Cryst Solids 353:2900–2909

    Article  CAS  Google Scholar 

  45. M.V. Migliorini, R.K. Donato, M.A. Benvegnu, R.S. Gonçalves, H.S. Schrekker (2008) J. Sol-Gel Sci Technol 48:272–276

    Article  CAS  Google Scholar 

  46. Einarsrud M-A, Kirkedelen MB, Nilsen E, Mortensen K, Samseth J (1998) Structural development of silica gels aged in TEOS. J of Non-Cryst Solids 231:10–16

    Article  CAS  Google Scholar 

  47. S. Haereid, E. Nilsen, V. Ranum, M.-A. Einarsrud (1997) Thermal and temporal aging of two steps acid-base catalyzed silica gels in water/ethanol solutions, J. Sol-Gel Sci and Tech 8:153–157

    CAS  Google Scholar 

  48. Smitha S, Shajesh P, Aravind PR, Rajesh Kumar S, Krishna Pillai P, Warrier KGK (2006) Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater 91:286–292

    Article  CAS  Google Scholar 

  49. Estella J, Echeverria JC, Laguna M, Garrido JJ (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater 102:274–282

    Article  CAS  Google Scholar 

  50. Strøm RA, Masmoudi Y, Rigacci A, Petermann G, Gullberg L, Chevalier B, Einarsrud M-A (2007) Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J Sol Gel Sci Technol 41:291–298

    Article  CAS  Google Scholar 

  51. Einasrud MA, Dahle M, Lima S, Hæreid S (1995) Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J Non-Cryst Solids 186:96–103

    Article  Google Scholar 

  52. Reichenauer G (2004), Thermal aging of silica gels in water. J Non-Cryst Solids 350:189–195

    Article  CAS  Google Scholar 

  53. Pajonk GM (1989) Drying methods preserving the textural properties of gels. Revue de Physique Appliquée 24(C4):13–22

    Google Scholar 

  54. Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels : phenomenology and basic techniques, Progress in Drying Technologies, Vol. 4, - special issue of Drying Technology, 21, Number 4: 593–628

    Google Scholar 

  55. Egeber ED, Engel J (1989) Freeze-drying of silica gels prepared from siliciumethoxide. Revue de Physique Appliquée 24(C4):23–28

    Google Scholar 

  56. Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225:24–29

    Article  CAS  Google Scholar 

  57. Allié C, Tcherkassova N, Ferrauche F, Lambert S, Heinrich B, Pirard R, Pirard JP (2006), Multigram scale synthesis and characterization of low-density silica xerogels. J Non-Cryst Solids 352:2763–2771

    Article  CAS  Google Scholar 

  58. Duffours L, Woignier T, Phalippou J (1995) Plastic behavior of aerogels under isostatic pressure. J Non-Cryst Solids 186:321–327

    Article  CAS  Google Scholar 

  59. Schultz JM, Jensen KI, Kristiansen FH (2005) Super insulating aerogel glazing. Solar Mater Solar Cells 89:275–285

    Article  CAS  Google Scholar 

  60. Jensen KI, Kristiansen FH, Schultz JM (2005) Highly superinsulating and light transmitting aerogel glazing for superinsulating windows, Publi Final Report HILIT+ (Eu contract ENK-CT-2002-00648)

    Google Scholar 

  61. Henning S (1985) Large-scale production of Airglass. In: Fricke J (ed) Aerogels, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo

    Google Scholar 

  62. Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3:363–367

    Article  CAS  Google Scholar 

  63. van Bommel MJ, de Haan AB (1995) Drying of silica aerogel with supercritical carbon dioxide. J Non-Cryst Solids 186:78–82

    Article  Google Scholar 

  64. Novak Z, Knez Z, Hadolin M (1999) Drying of silica aerogels with liquid and supercritical CO2. Recents Progres en Genie des Procedes 13:115–122

    CAS  Google Scholar 

  65. Wawrzyniak P, Rogacki G, Pruba J, Bartczak Z (2001) Effective diffusion coefficient in the low temperature process of silica aerogel production. J Non-Cryst Solids 285: 50–56

    Article  CAS  Google Scholar 

  66. Scherer GW (1994) Stress in aerogel during depressurization of autoclave : I. Theory. J of Sol-Gel Science and Technology 3:127–139

    Article  Google Scholar 

  67. Woignier T, Scherer GW (19994) Stress in aerogel during depressurization of autoclave : II. Silica gels. J Sol Gel Sci Technol 3:141–150

    Google Scholar 

  68. Lee K, Begag R (2001) Rapid aerogel production process, WO 01/28675 A1

    Google Scholar 

  69. Poco JF, Coronado PR, Pekala RW, Hrubesh LW (1996) A rapid supercritical extraction process for the production of silica aerogels. Mater Res Soc Symp Proc 431:297–302

    Article  CAS  Google Scholar 

  70. Gross J, Coronado PR, Hrubesh LW (1998) Elastic properties of silica aerogels from a new rapid supercritical extraction process. J Non-Cryst Solids 225:282–286

    Article  CAS  Google Scholar 

  71. Scherer GW, Gross J, Hrubesh LW, Coronado PR (2002) Optimization of the rapid supercritical extraction process for aerogels. J Non-Cryst Solids 311:259–272

    Article  CAS  Google Scholar 

  72. Gauthier BM, Bakrania SD, Anderson AM, Carroll MK (2004) A fast supercritical extraction technique for aerogel fabrication. J Non-Cryst Solids 350:238–243

    Article  CAS  Google Scholar 

  73. Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ (1997) Direct Formation of Aerogels by Sol-Gel Polymerizations of Alkoxysilanes in Supercritical Carbon Dioxide. Chem Mat 9:2264–2268

    Article  CAS  Google Scholar 

  74. Sharp KG(1994) A two-component, non-aqueous route to silica gel. J Sol Gel Sci Technol 2:35–41

    Google Scholar 

  75. Moner-Girona M, Roig A, Molins E, Llibre J (2003) Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents. J Sol Gel Sci Technol 26:645–649

    Article  CAS  Google Scholar 

  76. Kirkbir F, Murata H, Meyers D, Ray Chaudhuri S (1998) Drying of aerogels in different solvents between atmospheric and supercritical pressures. J Non-Cryst Solids 225:14–18

    Article  CAS  Google Scholar 

  77. Martin J, Hosticka B, Lattimer C, Norris PM (2001) Mechanical and acoustical properties as a function of PEG concentration in macroporous silica gels. J Non-Cryst Solids 285:222–229

    Article  CAS  Google Scholar 

  78. Reetz MT, Zonta A, Simpelkamp J(1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534

    Article  CAS  Google Scholar 

  79. Pierre M, Buisson P, Fache F, Pierre A (2000) Influence of the drying technique of silica gels on the enzymatic activity of encapsulated lipase. Biocatal Biotransformation 18:237–251

    Article  CAS  Google Scholar 

  80. Venkastewara Rao A, Kulkarni MM (2003) Effect of glycerol additive on physical properties of hydrophobic silica aerogels. Mater Chem Phys 77:819–825

    Article  Google Scholar 

  81. Anderson MT, Sawyer PS, Rieker T (1998) Surfactant-templated silica aerogels. Microporous Mesoporous Mater 20:53–65

    Article  CAS  Google Scholar 

  82. Parvathy Rao A, Pajonk GM, Venkastewara Rao A (2005) Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels. J Mater Sci 40:3481–3489

    Article  CAS  Google Scholar 

  83. Deshpande R, Hua, DW, Smith DM, Brinker CJ (1992) Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension. J Non-Cryst Solids 144:32–34

    Article  CAS  Google Scholar 

  84. Land VD, Harris TM, Teeters DC (2001) Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst Solids 283:11–17

    Article  CAS  Google Scholar 

  85. Hüsing N, Schubert U (2002) Aerogels. In: Ullmann’s Encyclopedia of Industrial Chemistry, 6th edn. Wiley

    Google Scholar 

  86. Rodembusch FS, Campo LF, Stefani V, Rigacci A (2005) The first silica aerogel fluorescent by excited state intramolecular proton transfer mechanism (ESIPT). J Mater Chem 15:1537–1541

    Article  CAS  Google Scholar 

  87. Smith DM, Deshpande R, Brinker CJ (1992) Preparation of low-density aerogels at ambient pressure. Mat Res Soc Symp Proc Vol. 271 567–572

    Article  CAS  Google Scholar 

  88. Kuhn J, Gleissner T, Aruini-Schuster MC, Korder S, Fricke J (1995) Integration of mineral powders into SiO2 aerogels. J Non-Cryst Solids 186:291–295

    Article  CAS  Google Scholar 

  89. Santos A, Ajbary M, Toldeo-Fernandez JA, Morales-Florez V, Kherbeche A, Esquivias L (2008) Reactivity of CO2 traps in aerogel-wollastonite composite. J Sol Gel Sci Technol 48:224–230

    Article  CAS  Google Scholar 

  90. Kulkarni MM, Bandyopadhyaya R, Bhattacharya B, Sharma A (2006) Microstructural and mechanical properties of silica-PEPEG polymer composite xerogels. Acta Materialia 54:5231–5240

    Article  CAS  Google Scholar 

  91. Vicarini MA, Nicolaon GA, Teichner SJ (1970) Propriétés texturales d’aérogels minéraux mixte préparés par hydrolyse simultanée de deux alcoolates métalliques en solution dans un milieu organique. Bulletin de la Société Chimique de France 10:3384–3387

    Google Scholar 

  92. Cao S, Yao N, Yeung KL (2008) Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores. J Sol-Gel Sci and Tech 46:323–333

    Article  CAS  Google Scholar 

  93. Mosquera MJ, de los Santos DM, Valdez-Castro L, Esquivias L (2008) New route for producing crack-free xerogels: obtaining uniform pore size. J Non-Cryst Solids 354:645–650

    Article  CAS  Google Scholar 

  94. Meador MA, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilarias P, Johnston JC, Leventis N (2005) Cross-linking amine-modified silica aerogels with epoxies : mechanically strong lightwight prorous materials. Chem Mater 17:10851098

    Article  CAS  Google Scholar 

  95. Patwardhan SV, Mukherjee N, Durstock MF, Chiang LY, Clarson SJ (2002) Synthesis of C-60 fuellerene-silica hybrid nanostructures. Journal of Inorganic and Organometallic Polymers 12:49–55

    Article  CAS  Google Scholar 

  96. Silveira F, Pires GP, Petry CF, Pozebon D, Stedile FC, dos Santos JHZ, Rigacci A (2007) Effect of silica texture on grafting metallocene catalysts. Journal of Molecular Catalysis A: Chemicals 265:167–176

    Article  CAS  Google Scholar 

  97. Marzouk S, Rachdi F, Fourati M, Bouaziz J (2004) Synthesis and grafting of silica aerogels. Colloids and Surfaces A: Physicochem. Eng. Aspects 234:109–116

    Article  CAS  Google Scholar 

  98. Lee D, Stevens PC, Zeng SQ, Hunt AJ (1995) Thermal characterization of carbon-opacified silica aerogels. J of Non-Cryst Solids 186:285–290

    Article  CAS  Google Scholar 

  99. Silveira N, Ehrburger-Dolle F, Rochas C, Rigacci A, Vargas Pereira F, Westfahl H (2005) Smectic ordering in polymer liquid crystal-silica aerogels nanocomposites, J Thermal analysis and Calorimetry 79:579–585

    Article  CAS  Google Scholar 

  100. Bednarczyk S, Bechir R, Baclet P (1999) Laser micromachining of small objects for high energy laser experiments. Applied Physics A (A69):495–500

    Article  Google Scholar 

  101. Prassas M, Phalippou J, Zarzycki J (1986) Sintering of monolithic silica aerogels. In: Hench LL and Ulrich DR (eds) Science of Ceramic Chemical Processing, Wiley, New York

    Google Scholar 

  102. Ayral A, Phalippou A, Woignier T (1992) Skeletal density of silica aerogels determined by helium pycnometry. J Materials Science 27:1166–1170

    Article  CAS  Google Scholar 

  103. Hafidi Alaoui A, Woignier T, Phalippou J, Scherer GW (1998) Room Temperature Densification of Aerogel by Isostatic Compression. J Sol Gel Sci Technol 13:365–369

    Article  Google Scholar 

  104. Venkastewara Rao A, Kulkarni MM (2002) Hydrophobic properties of TMOS/TMES-based silica aerogels. Mater Res Bull 37:1667–1677

    Article  Google Scholar 

  105. Allié C, Pirard R, Pirard J-P (2002) The role of the main silica precursor and the additive in the preparation of low-density xerogels. J Non-Cryst Solids 311:304–313

    Article  Google Scholar 

  106. Mandelbrot BB (1977) Fractals: Form, Chances and Dimensions. Freeman, San Francisco

    Google Scholar 

  107. Platzer WJ, Bergkvist M (1993) Bulk and surface light scattering from transparent silica aerogel. Solar Energy Mater Solar Cells 31:243–251

    Article  CAS  Google Scholar 

  108. Kolb M, Botet R, Jullien R (1983) Scaling of kinetically growing clusters, Phys Rev Lett 51:1123–1127

    Article  Google Scholar 

  109. Ehrburger-Dolle F, Dallamano J, Elaloui E, Pajonk G (1995) Relations between the texture of silica aerogels and their preparation. J Non-Cryst Solids 186:9–17

    Article  CAS  Google Scholar 

  110. Yoda S, Ohshima S (1999) Supercritical drying media modification for silica aerogel preparation. J Non-Cryst Solids 248:224–234

    Article  CAS  Google Scholar 

  111. Reichenauer G, Scherer GW (2001) Nitrogen sorption in aerogels, J. Non-Cryst Solids 285:167–174

    Article  CAS  Google Scholar 

  112. Pirard R, Blacher s, Brouers f, Pirard JP (1995) Interpretation of mercury porosimetry applied to aerogels; J Mater Res 10:2114–2119

    Google Scholar 

  113. Calas S (1997) Surface et porosité dans les aérogels de silice : étude structurale et texturale. Thèse de doctorat, Université de Montpellier

    Google Scholar 

  114. Schuth F, Sing KSW, Weitkamp J. (Eds.) (2002) Handbook of Porous Solids. Wiley-VCH Verlag, Weinheim, Germany. 3:2014

    Google Scholar 

  115. Venkastewara Rao A, Nilsen E, Einarsrud MA (2001) Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. J Non-Cryst Solids 296:165–171

    Article  Google Scholar 

  116. Venkastewara Rao A, Hegde ND, Hirashima H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci 305:124–132

    Article  CAS  Google Scholar 

  117. Venkastewara Rao A, Pajonk GM, Bhagat SD, Barboux P (2004) Comparative studies on the surface chemical modification of silica aerogels based on various organosilane compounds of the type RnSiX4−n. J Non-Cryst Solids 350:216–223

    Article  CAS  Google Scholar 

  118. Parvathy Rao A, Venkateswara Rao A, Pajonk GM (2005) Hydrophobic and Physical Properties of the Two Step Processed Ambient Pressure Dried Silica Aerogels with Various Exchanging Solvents. J Sol Gel Sci Technol 36:285–292

    Article  CAS  Google Scholar 

  119. Parvathy Rao A, Venkastewara Rao A, Pajonk GM (2007) Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl Surf Sci 253:6032–6040

    Article  CAS  Google Scholar 

  120. Kim GS, Hyun SH (2003) Effect of mixing on thermal and mechanical properties of aerogel-PVB composites. J Mater Sci 38:1961–1966

    Article  CAS  Google Scholar 

  121. Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722

    Article  CAS  Google Scholar 

  122. Hüsing N Schubert U, Misof K, Fratzi P (1998) Formation and Structure of Porous Gel Networks from Si(OMe)4 in the Presence of A(CH2)nSi(OR)3 (A = Functional Group). Chem Mater 10:3024–3032

    Article  Google Scholar 

  123. Venkateswara Rao A, Kulkarni MM, Pajonk GM, Amalnerkar DP, Seth T (2003) Synthesis and Characterization of Hydrophobic Silica Aerogels Using Trimethylethoxysilane as a Co-Precursor J Sol Gel Sci Technol 27:103–109

    Google Scholar 

  124. Yoldas BE, Annen MJ, Bostaph J (2000) Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem Mater 12:2475–2484

    Article  CAS  Google Scholar 

  125. Wolff B, Seybold G, Krueckau FE (1989) Thermal insulators having density 0.1 to 0.4 g/cm3, and their manufacture BASF-G, Eur Pat Appl EP 0340707

    Google Scholar 

  126. Quenard D, Chevalier B, Sallee H, Olive F, Giraud D (1998) Heat transfer by conduction and radiation in building materials: review and new developments Rev Metall Cahier Inf Tech 95: 1149–1158

    CAS  Google Scholar 

  127. Fesmire JE, Sass JP (2008) Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 48:223–231

    Article  CAS  Google Scholar 

  128. Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427

    Article  CAS  Google Scholar 

  129. Guise MT, Hosticka B, Earp BC, Norris PM (1995) An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres. J Non-Cryst Solids 285:317–322

    Article  Google Scholar 

  130. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342

    Article  CAS  Google Scholar 

  131. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non-Cryst Solids 225:364–368

    Article  CAS  Google Scholar 

  132. Jones SM (2006) Aerogel: Space exploration applications. J Sol-Gel Sci Technol 40:351–357

    Article  CAS  Google Scholar 

  133. Pajonk GM (1998) Transparent silica aerogels. J Non-Cryst Solids 225:307–314

    Article  CAS  Google Scholar 

  134. Buzykaev AR, Danilyuk AF, Ganzhur SF, Kravchenko EA, Onuchin AP (1999) Measurement of optical parameters of aerogel. Nucl Instr Meth Phys Res A 433:396–400

    Article  CAS  Google Scholar 

  135. Danilyuk AF, Kravchenko EA, Okunev AG, Onuchin AP, Shaurman SA (1999) Synthesis of aerogel tiles with high light scattering length. Nucl Instr Meth Phys Res A 433:406–407

    Article  CAS  Google Scholar 

  136. Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings. J Non-Cryst Solids 350:351–357

    Article  CAS  Google Scholar 

  137. Adachi I, Fratina S, Fukushim T, Gorisek A, Iijima T, Kawai H, Konishi M, Korpar S, Kozakai Y, Krizan P, Matsumoto T, Mazuka Y, Nishida S, Ogawa S, Ohtake S, Pestotnik R, Saitoh S, Seki T, Sumiyoshi T, Tabata M, Uchida Y, Unno Y, Yamamoto S (2005) Study of highly transparent silica aerogel as a RICH radiator. Nucl Instr Meth Phys Res A 553:146–151

    Article  CAS  Google Scholar 

  138. Duer K, Svendsen S (1998) Monolithic silica aerogel in superinsulating glazings Sol Energy 63:259–267

    Article  CAS  Google Scholar 

  139. Husing N, Schubert U (1998) Aerogels - Airy materials: Chemistry, structure, and properties. Angew Chem Int Ed 37:23–45

    Article  Google Scholar 

  140. Tajiri K, Igarashi K (1998) The effect of the preparation conditions on the optical properties of transparent silica aerogels. Sol Energy Mater Sol Cells 54:189–195

    Article  CAS  Google Scholar 

  141. Venkateswara Rao A, Haranath D, Pajonk GM, Wagh PB (1998) Optimisation of supercritical drying parameters for transparent silica aerogel window applications. Mater Sci Technol 14: 1194–1199

    Article  Google Scholar 

  142. Pajonk GM, Elaloui E, Achard P, Chevalier B, Chevalier JL, Durant M (1995) Physical properties of silica gels and aerogels prepared with new polymeric precursors, J Non-Cryst Solids 186:1–8

    Article  CAS  Google Scholar 

  143. Rigacci A, Ehrburger-Dolle F, Geissler E, Chevalier B, Sallée H, Achard P, Barbieri O, Berthon S, Bley F, Livet F, Pajonk GM, Pinto N, Rochas C (2001), Investigation of the multi-scale structure of silica aerogels by SAXS. J. Non-Cryst. Solids 285:187–193

    Article  CAS  Google Scholar 

  144. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Yokoyama M, Yokogawa H (1998) Silica aerogels in high energy physics. J Non-Cryst Solids 225:369–374

    Article  CAS  Google Scholar 

  145. Poelz G, Riethmueller R (1982) Preparation of silica aerogel for Cherenkov counters. Nuc Instr Meth 195:491–503

    Article  CAS  Google Scholar 

  146. Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non-Cryst Solids 186:23–29

    Article  CAS  Google Scholar 

  147. Kharzheev YN (2008) Use of silica aerogels in Cherenkov counters. Physics of Particles and Nuclei, 39:107–135

    Article  CAS  Google Scholar 

  148. De Leo R (2008) Long-term operational experience with the HERMES aerogel RICH detector. Nuclear Instruments & Methods Phys Res A: Accelerators, Spectrometers, Detectors, and Associated Equipment 595:19–22

    Article  CAS  Google Scholar 

  149. Forest L, Gibiat V, Woignier T (1998) Biot's theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225:287–292

    Article  CAS  Google Scholar 

  150. Conroy JFT, Hosticka B, Davis SC, Smith AN, Norris PM (1999) Evaluation of the acoustic properties of silica aerogels MD (Am Soc Mech Eng) 82:25–33

    Google Scholar 

  151. Burger T, Fricke J (1998) Aerogels: Production, modification and applications. Berichte der Bunsen Gesellschaft Phys Chemi Chem Phys 102:1523–1528

    Article  CAS  Google Scholar 

  152. Gross J, Fricke J (1992) Ultrasonic velocity measurements in silica, carbon and organic aerogels J Non-Cryst Solids 145:217–222

    Article  CAS  Google Scholar 

  153. Ma H-S, Roberts AP, Prévost J-H, Jullien R, Scherer GW (2000) Mechanical structure-property relationship of aerogels. J Non-Cryst Solids 277:127–141

    Article  CAS  Google Scholar 

  154. Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. Revue de Physique Appliquée 24(C4):179–184

    Google Scholar 

  155. Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186: 316–320

    Article  CAS  Google Scholar 

  156. Bisson A, Rodier E, Rigacci A, Lecomte D, Achard P (2004) Study of evaporative drying of treated silica gels. J Non-Cryst Solids 350:230–237

    Article  CAS  Google Scholar 

  157. Fricke J, Emmerling A (1998) Aerogels - Recent progress in production techniques and novel applications. J Sol-Gel Sci Technol 13:299–303

    Article  CAS  Google Scholar 

  158. Kramer SJ, Rubio-Alonso F, Mackenzie JD (1996) Organically modified silicate aerogels, “Aeromosils”. Mater Res Soc Symp Proc 435:295–300

    Article  CAS  Google Scholar 

  159. Capadona LA, Meador MA, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible low-density polymer crosslinked silica aerogels. Polymer 47:5754–5761

    Article  CAS  Google Scholar 

  160. Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223:179–189

    Article  CAS  Google Scholar 

  161. Despetis F, Etienne P, Phalippou J (2000) Crack speed in ultraporous brittle amorphous material Phys Chem Glasses 41:104–106

    CAS  Google Scholar 

  162. Etienne P, Despetis F, Phalippou J (1998) Subcritical crack velocity in silica aerogels J Non-Cryst Solids 225: 266–271

    Article  CAS  Google Scholar 

  163. Holmes NC, Radousky HB, Moss MJ, Nellis WJ, Henning S (1984) Silica at ultrahigh temperature and expanded volume. Appl Phys Lett 45:626–628

    Article  CAS  Google Scholar 

  164. Amendt P, Glendinning SG, Hammel BA, Landen OL, Murphy TJ, Suter LJ, Hatchett S, Rosen MD, Lafittte S, Desenne D, Jadaud JP (1997) New methods for diagnosing and controlling hohlraum drive asymmetry on Nova. Phys Plasmas 4:1862–1871

    Article  CAS  Google Scholar 

  165. Kawakami N, Fukumoto Y, Kinoshita T, Suzuki K, Inoue K (2000) Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn J Appl Phys Part 2 39:L182–L184

    Article  Google Scholar 

  166. CaoY, Xia ZF, Li Q, Shen J, Chen LY, Zhou B (1998) Study of porous dielectrics as electret materials. IEEE Trans Dielectr Electr Insul 5:58–62

    Article  Google Scholar 

  167. Charlton A, McKinnie IT, Meneses-Nava MA, King TA (1992) A tunable visible solid state laser. J Mod Opt 39:1517–1523

    Article  CAS  Google Scholar 

  168. Zhou B, Wang J, Zhao L, Shen J, Deng ZS, Li YF (2000) Preparation of C60-doped silica aerogels and the study of photoluminescence properties. J Vac Sci Technol B 18:2001–2004

    Article  CAS  Google Scholar 

  169. Shen J, Wang J, Zhou B, Deng ZS, Weng ZN, Zhu L, Zhao L, Li YF (1998) Photoluminescence of fullerenes doped in silica aerogels. J Non-Cryst Solids 225:315–318

    Article  CAS  Google Scholar 

  170. Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion. Chem Mater 11:2837–2845

    Article  CAS  Google Scholar 

  171. Bockhorst M, Heinloth K, Pajonk GM, Begag R, Elaloui E (1995) Fluorescent dye doped aerogels for the enhancement of Cherenkov light detection. J Non-Cryst Solids 186:388–394

    Article  CAS  Google Scholar 

  172. Barnik MI, Vasilchenko VG, Golovkin SV, Medvedkov AM, Solovev AS, Yudin SG (2000) Scintillation properties of materials based on liquid crystals in static and dynamic states. Instrum Exp Techn 43:602–611

    Article  CAS  Google Scholar 

  173. Kim NK, Kim K, Payne DA, Upadhye RS (1988) Fabrication of hollow silica aerogel spheres by a droplet generation method and sol-gel processing. J Vac Sci Technol A 7:1181–1184

    Article  Google Scholar 

  174. Jang KY, Kim K, Upadhye RS (1990) Hollow silica spheres of controlled size and porosity by sol-gel processing. J Vac Sci Technol A 8:1732–1735

    Article  CAS  Google Scholar 

  175. Kim KK, Jang KY (1991) Hollow silica spheres of controlled size and porosity by sol-gel processing. J Am Ceram Soc 74:1987–1992

    Article  CAS  Google Scholar 

  176. Tastevin G, Nacher PJ, Guillot G (2000) NMR of hyperpolarised 3He gas in aerogel Physica B 284–288 Part 1:291–292

    Google Scholar 

  177. Pavlovskaya G, Blue AK, Gibbs SJ, Haake M, Cros F, Malier L, Meersmann T (1999) Xenon-131 Surface Sensitive Imaging of Aerogels in Liquid Xenon near the Critical Point J Magn Reson 137:258–264

    Google Scholar 

  178. Halperin WP, Gervais G, Yawata K, Mulders N. (2003) Impurity phases of superfluid 3He in aerogel. Physica B: Condensed Matter (Amsterdam, Netherlands), 329–333(Pt. 1):288–291

    Google Scholar 

  179. Feldman DE (2000) Quasi-Long-Range Order in Nematics Confined in Random Porous Media Phys Rev Lett 84:4886–4889

    Article  CAS  Google Scholar 

  180. Antczak T, Mrowiec-Bialon J, Bielecki S, Jarzebski AB, Malinowski JJ, Lachowski AI, Galas E (1997) Thermostability and esterification activity in silica aerogel matrix and in organic solvents. Biotechnol Techn 11:9–11

    Article  CAS  Google Scholar 

  181. Pierre M, Buisson P, Fache F, Pierre AC (2000) Influence of the drying technique of silica gels on the enzymatic activity of encapsulated lipase. Biocatal Biotransform 18:237–251

    Article  CAS  Google Scholar 

  182. Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285:295–302

    Article  CAS  Google Scholar 

  183. Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285:303–308

    Article  CAS  Google Scholar 

  184. Bernik DL (2007) Silicon based materials for drug delivery devices and implants. Recent Patents on Nanotechnology, 1:186–192

    Google Scholar 

  185. Smirnova I, Arlt W (2004) Synthesis of silica aerogels and their application as drug delivery system. In Brunner, G (ed) Supercritical Fluids as Solvents and Reaction Media: 381–427

    Google Scholar 

  186. Emmerling A, Gross J, Gerlach R, Goswin R, Reichenauer G, Fricke J, Haubold HG (1990) Isothermal sintering of silica aerogels. J Non-Cryst Solids 125:230–243

    Article  CAS  Google Scholar 

  187. Reynes J, Woignier T, Phalippou J, Dussossoy JL (1999) Host material for nuclear waste storage. Adv Sci Technol 24:547–550

    CAS  Google Scholar 

  188. Woignier T, Reynes J, Phalippou J, Dussossoy JL, Jacquet-Francillon N (1998) Sintered silica aerogel: a host matrix for long life nuclear wastes. J Non-Cryst Solids 225:353–357

    Article  CAS  Google Scholar 

  189. Reynes J, Woignier T, Phalippou J (2001) Permeability measurement in composite aerogels: application to nuclear waste storage J Non-Cryst Solids 285:323–327

    Article  CAS  Google Scholar 

  190. Aristov YI, Restuccia G, Tokarev MM, Cacciola G (2000) Selective Water Sorbents for Multiple Applications, 10. Energy Storage Ability. React Kinet Catal Lett 69:345–353

    Article  CAS  Google Scholar 

  191. Gesser HD, Goswani PC (1989) Infrared study of OH and NH2 groups on the surface of a dry silica aerogel. Chem Rev 89:765–788

    Article  CAS  Google Scholar 

  192. Pajonk GM, Venkateswara Rao A (2001) From sol-gel chemistry to the applications of some inorganic and/or organic aerogels. Recent Res Develop Non-Crystalline Solids 1:1–20

    CAS  Google Scholar 

  193. Loschiavo SR (1988) Availability of food as a factor in effectiveness of a silica aerogel against the merchant grain beetle (Coleoptera: Cucujidae). J Econom Entomoly 81:1237–1240

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors would like to warmly acknowledge the European Commission, the French Agency for Environment and Energy Management (ADEME), the French National Research Agency (ANR), and ARMINES (The Contract Research Association of MINES Schools) for their financial support since the early 1990s through different projects (such as HILIT, HILIT+, PACTE Aerogels, and ISOCOMP), the historical partners among which PCAS (Longjumeau, France), CSTB (Grenoble, France), LACE (Lyon, France), NTNU (Trondheim, Norway), ULG (Liège University, Belgium), as well as Yasmine Masmoudi and Antoine Bisson plus Jihan Jabbour for their respective PhD and Post-Doc researches on silica aerogels, and, last but not least, Patrick Achard, Head of the EM&P team in which A. Rigacci has been studying aerogels for energy applications since 1994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pierre, A.C., Rigacci, A. (2011). SiO2 Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics