Skip to main content

Aerogels for Superinsulation: A Synoptic View

  • Chapter
  • First Online:
Book cover Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

The present chapter is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanostructured materials. Most likely this old vision will become reality in the near future.Following a short presentation of the global need for superinsulation together with a closer look at the specific situation in the building sector, we propose within this synopsis a brief analysis of (1) the world’s insulation markets, (2) superinsulating aerogel materials and their alternatives, (3) commercial aerogel insulation products available today, and (4) our estimation of their most likely applications worldwide in the future. We conclude this chapter with some first considerations on health, toxicity, and environmental aspects.Based on recent developments in the field, it can be stated that aerogels still offer the greatest potential for nonevacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. This chapter of the handbook bridges the gap between those dealing with thermal insulation properties of aerogel materials in general (Chap. 21) and the various commercial products described in Part XV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsky RB, Kilian L (2004) Oil and the Macroeconomy Since the 1970s, J Econ Persp 18(4):115–134

    Article  Google Scholar 

  2. Woodwell GM (1978) The carbon dioxide question, Scientific American 238:34–43

    Article  CAS  Google Scholar 

  3. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell I (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model, Nature 408:184–187

    Article  CAS  Google Scholar 

  4. Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change – The IPCC scientific assessment, Cambridge University Press, Cambridge England and New York

    Google Scholar 

  5. Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission, Science 299(5615):2052–2054

    Article  CAS  Google Scholar 

  6. Weber L, (1997) Some reflections on barriers to the efficient use of energy, Energy Policy 25(10):833–835

    Article  Google Scholar 

  7. Janda KB, Busch JF (1994) Worldwide status of energy standards for buildings, Energy 19(1):27–44

    Article  Google Scholar 

  8. Papadopoulos AM, (2005) State of the art in thermal insulation materials and aims for future developments, Energy and Buildings 37(1):77–86

    Article  Google Scholar 

  9. Lee OJ, Lee KH, Yim TJ, Kim SY, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements, J Non-Cryst Solids 298:287–292

    Article  CAS  Google Scholar 

  10. Viskanta R, Gosh RJ (1962) Heat transfer by simultaneous conduction and radiation in an absorbing medium, J Heat Trans 2:63–71

    Article  Google Scholar 

  11. Scheuerpflug P, Caps R, Büttner D, Fricke J (1985) Apparent thermal conductivity of evacuated SiO2 aerogel tiles under variations of radiative boundary conditions, Int J Heat mass Transfer 28:2299–2306

    Article  CAS  Google Scholar 

  12. Bernasconi A, Sleator T, Posselt D, Kjems JK, Ott HR (1992) Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements, Phys Rev B 45:10363–10376

    Article  CAS  Google Scholar 

  13. Vacher R, Woignier T, Pelous J (1988) Structure and self-similarity of silica aerogels, Phys Rev B 37:6500–6503

    Article  CAS  Google Scholar 

  14. Craievich A, Aegerter MA, dos Santos DI, Woignier T, Zarzycki J (1986) A SAXS study of silica aerogels, J Non-Cryst Solids, 86:394–406

    Article  CAS  Google Scholar 

  15. Hasmy A, Foret M, Anglaret E, Pelous J, Vacher R, Jullien R (1995) Small-angle neutron scattering of aerogels: simulations and experiments, J Non-Cryst Solids 186:118–130

    Article  CAS  Google Scholar 

  16. Simmler H, Brunner S (2005) Aging and service life of VIP in buildings, Energy and Buildings 37(11): 1122–1131

    Article  Google Scholar 

  17. Caps R, Heinemann U, Ehrmanntraut M, Fricke J (2001) Evacuated insulation panels filled with pyrogenic silica powders − Properties and Applications, High Temperatures – High Pressures 33(2):151–156

    Article  CAS  Google Scholar 

  18. Manz H (2008) On minimizing heat transport in architectural glazing, Renewable Energy 33(1):119–128

    Article  Google Scholar 

  19. Freedonia market study #2434 (2009) Freedonia group, Cleveland, OH, USA

    Google Scholar 

  20. BCC market study #AVM052B (2009) BCC research Inc, Wellesley, MA, USA

    Google Scholar 

  21. Brinker CJ, Scherer GW (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, USA

    Google Scholar 

  22. Kistler SS (1932) Coherent expanded aerogels, J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  23. Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels, Advances in Colloid and Interfaces Science 5:245–273

    Article  CAS  Google Scholar 

  24. Mehrotra MC (1992) Precursors for aerogels, J Non-Cryst Solids 145:1–10

    Article  CAS  Google Scholar 

  25. Iler RK (1979) The Chemistry of Silica, John Wiley & Sons, New York USA

    Google Scholar 

  26. Calas S (1997) Surface et porosité dans les aérogels de silice : étude structurale et texturale. PhD thesis Université de Montpellier (France)

    Google Scholar 

  27. Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels, Journal of Materials Research 9:731–738

    Article  CAS  Google Scholar 

  28. Bisson A, Rigacci A, Lecomte D, Achard P (2004) Effective thermal conductivity of divided silica xerogels beds, J Non-Cryst Solids 350:379–384

    Article  CAS  Google Scholar 

  29. Deng Z, Wang J, Wu A, Shen J, Zhou B (1998) High strength SiO2 aerogel insulation, J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  30. Pajonk GM, Elaloui E, Achard P, Chevalier B, Chevalier JL, Durant M (1995) Physical properties of silica gels and aerogels prepared with new polymeric precursors, J Non-Cryst Solids 186:1–8

    Article  CAS  Google Scholar 

  31. Haereid S (1993) Preparation and characterization of transparent monolithic silica xerogels with low density, PhD thesis NTNU (Norway)

    Google Scholar 

  32. Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying, J Non-Cryst Solids 225:24–29

    Article  CAS  Google Scholar 

  33. Rao VA, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor, J Colloid Interface Sci 300:279–285

    Article  CAS  Google Scholar 

  34. Smith DM, Deshpande R, Brinker CJ (1992) Preparation of low-density aerogels at ambient pressure, Mat Res Soc Symp Proc Vol. 271 567–572

    Article  CAS  Google Scholar 

  35. Bisson A, Rigacci A, Achard P, De Candido M, Florent P, Pouleyrn G, Bonnardel P (2006) Procédé d’élaboration de xérogels de silice hydrophobes, FR2873677

    Google Scholar 

  36. Smith DM, Maskara A, Boes U (1998) Aerogel-based thermal insulation, J Non-Cryst Solids 225:254–259

    Article  CAS  Google Scholar 

  37. Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels, Rev Phys Appl C4:179–184

    Google Scholar 

  38. Ryu J (2000) Flexible aerogel superinsulation and its manufacture, US Pat. # 6068882

    Google Scholar 

  39. Trifu R, Bhobho N (2007) Flexible coherent insulating structures, US2007173157

    Google Scholar 

  40. Chandradass J, Kang S, Bae D-S (2008) Synthesis of silica aerogel blanket by ambient drying method using waterglass based precursor and glass wool modified alumina sol, J Non-Cryst Solids 354:4115–4119

    Article  CAS  Google Scholar 

  41. Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure, Journal of Heat Transfer 129:232–235

    Article  CAS  Google Scholar 

  42. Pekala RW, Kong FM (1992) Resorcinol-formaldehyde aerogels and their carbonised derivatives, Polym Prepr 30:221–223

    Google Scholar 

  43. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels, J Non-Cryst Solids 188:226–234

    Article  CAS  Google Scholar 

  44. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression, J Non-Cryst Solids 125:67–75

    Article  CAS  Google Scholar 

  45. Biesmans GL (1999) Polyisocyanate based aerogel, US Pat. # 5990184

    Google Scholar 

  46. Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance, J Non-Cryst Solids 225:36–40

    Article  CAS  Google Scholar 

  47. Rigacci A, Maréchal JC, Repoux M, Moreno M, Achard P (2004) Elaboration of aerogels and xerogels of polyurethane for thermal insulation, J Non-Cryst Solids 350:372–378

    Article  CAS  Google Scholar 

  48. Lee JK, Gould GK, Rhine W (2009) Polyurea based aerogel for high performance thermal insulation material, J Sol-Gel Sci Technol 49:209–220

    Article  CAS  Google Scholar 

  49. Egger CC, du Fresne C, Schmidt D, Yang J, Schädler V (2008) Design of highly porous melamine-based networks through a bicontinuous microemulsion templating strategy, J Sol-Gel Sci Technol 48:86–94

    Article  CAS  Google Scholar 

  50. du Fresne C, Schmidt DF, Egger C, Schädler V (2007) Supramolecular templating of organic xerogels, XVth International Sol-Gel Conference, Montpellier, France (september 2–7):129

    Google Scholar 

  51. Lee JK, Gould GL (2007) Polycyclopentadiene based aerogel: a new insulation material, J Sol-Gel Sci Technol 44:29–40

    Article  CAS  Google Scholar 

  52. Tang Y, Polli A, Bilgrien CJ, Young DR, Rhine WE, Gould GL (2007) Aerogel-foam composites, WO Pat. # 2007146945

    Google Scholar 

  53. Lee JK (2007) Organic aerogels reinforced with inorganic fillers, US Pat. # 2007259979

    Google Scholar 

  54. Ristic-Lehmann C, Farnworh B, Dutta A, Reis BE (2008) Aerogel/PTFE composite insulating material

    Google Scholar 

  55. Mensahi J, Bauer U, Pothmann E, Peterson AA, Wilkins AK, Anton M, Doshi D, Dalzell W (2007) Aerogel based composites WO Pat. # 2007047970

    Google Scholar 

  56. Mackenzie JD, Chung YJ, Hu Y (1992) Rubbery ormosils and their applications, J Non-Cryst Solids 147&148:271–279

    Article  Google Scholar 

  57. Ou DL, Gould GL (2005) Ormosil aerogels containing silicon bonded linear polymers, WO Pat. # 2005068361

    Google Scholar 

  58. Ou DL, Gould GL, Stepanian CJ (2006) Ormosil aerogels containing silicon bonded polymethacrylate, WO Pat. # 2005098553

    Google Scholar 

  59. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) Elastic organic-inorganic hybrid aerogels and xerogels, J Sol-Gel Sci Technol 48:172–181

    Article  CAS  Google Scholar 

  60. Capadona LA, Meador MA, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer cross-linked silica aerogels, Polymer 47:5754–5761

    Article  CAS  Google Scholar 

  61. Leventis N, Mulik S, Wang X, Dass A, Patil VU, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of template mesoporous silica monoliths with improved mechanical properties, J Non-Cryst Solids 354:632–644

    Article  CAS  Google Scholar 

  62. Rhine WE, Ou, DL, Sonn JH (2007) Hybrid organic-inorganic materials and methods of preparing the same, WO Pat. # 2007126410

    Google Scholar 

  63. Hostler SR, Abramson AR, Gawryla MD, Bandi SA, Schiraldi DA (2008) Thermal conductivity of a clay-based aerogel, International Journal of Heat and Mass Transfer 52:665–669

    Article  Google Scholar 

  64. Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) J Mater Chem 19:2118–2124

    Article  CAS  Google Scholar 

  65. Wei G, Zhang X, Yu F (2009) Effective thermal conductivity of Xonotlite-aerogel composite insulation material, Journal of Thermal Science 18:142–149

    Article  CAS  Google Scholar 

  66. Frisch G, Zimmermann A, Schwertfeger F (1997) Use of aerogels in agriculture, MX Pat. # 9706411

    Google Scholar 

  67. Vukasovich MS (1970) Fluorescent pigment, GB Pat. # 1191483

    Google Scholar 

  68. Wang, X-Y.; Harpster, G.; Hunter, J.; Nasa TM-report #214675, 2007

    Google Scholar 

  69. Savolainen, K.; Pylkkaenen, L.; Norppa, H.; Falck, G.; Lindberg, H.; Tuomi, T.; Vippola, M.; Alenius, H.; Brouwer, D.; Mark, D.; Bard, D.; Berges, M.; Jankowska, E.; Posniak, M.; Farmer, P.; Singh, R.; Krombach, F.; Toxicology Letters, 2008, 180, S21

    Article  Google Scholar 

  70. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel, Science 311:622–627

    Article  CAS  Google Scholar 

  71. Jensen KI, Schultz JM, Kristiansen FH (2004) Development of windows based on highly insulating aerogel glazings, J Non-Cryst Solids 350:351–357

    Article  CAS  Google Scholar 

  72. Schultz JM, Jensen KI, Kristiansen FH (2005) Superinsulating aerogel glazing, Solar Energy Materials and Solar cells 89:275–285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Achard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koebel, M.M., Rigacci, A., Achard, P. (2011). Aerogels for Superinsulation: A Synoptic View. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics