Skip to main content

Preparation and Application of Carbon Aerogels

  • Chapter
  • First Online:

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Carbon aerogels are nanostructure porous carbon materials with high specific surface areas and relative low electric resistance. In recent years, they have attracted much attention because of their extraordinary properties and potential uses in a wide variety of technological applications. Many studies have been carried out concerning carbon aerogel synthesis and characterization. This contribution summarizes recent developments in the synthesis, properties, and applications of carbon aerogels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127: 741.

    CAS  Google Scholar 

  2. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64.

    Article  CAS  Google Scholar 

  3. Kistler SS (1941) Aerogels. Patent US 2249767 assigned to Monsanto Chemical Co.

    Google Scholar 

  4. Kistler SS (1952) Water Repellent Aerogels. Patent US 258970.

    Google Scholar 

  5. Smith DM, Stein D, Anderson JM, Ackermann W (1995) Preparation of low-density xerogels at ambient pressure. J Non-Cryst Solids 186: 104.

    Article  CAS  Google Scholar 

  6. Teichner SJ (1986) Aerogels of Inorganic Oxides, Springer Proc Phys 6:22–30.

    Article  CAS  Google Scholar 

  7. Brinker CJ, Ward KJ, Keefer KD, Holupka E, Bray PJ, Pearson RK (1986) Synthesis and structure of borate based aerogel. In Aerogels. Springer Proc Phys 6:57–67.

    Article  CAS  Google Scholar 

  8. Henning S, Svensson L (1981) Production of Silica Aerogel. Phys Scr 23: 697.

    CAS  Google Scholar 

  9. Fricke J (ed) (1986) Proceedings of the First International Symposium on Aerogels (ISA 1), Springer Proc Phys 6:167–173. Springer-Verlag, Berlin.

    Google Scholar 

  10. Fricke J (ed) (1986) Proceedings of the First International Symposium on Aerogels (ISA 1), Springer Proc Phys 6: 38. Springer-Verlag, Berlin.

    Google Scholar 

  11. Fricke J (ed) (1986) Proceedings of the First International Symposium on Aerogels (ISA 1), Springer Proc Phys 6: 127. Springer-Verlag, Berlin.

    Google Scholar 

  12. Fricke J (ed) (1986) Proceedings of the First International Symposium on Aerogels (ISA 1), Springer Proc Phys 6: 94. Springer-Verlag, Berlin.

    Google Scholar 

  13. Fricke J (ed) (1986) Proceedings of the First International Symposium on Aerogels (ISA 1), Springer Proc Phys 6: 167. Springer-Verlag, Berlin.

    Google Scholar 

  14. Vacher R, Phalippou J, Pelous J, Woignier T (eds) (1989) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev Phys Appl Colloq 24-C4.

    Google Scholar 

  15. Fricke J (ed) (1992) Proceedings of the Third International Symposium on Aerogels (ISA 3), J Non-Cryst Solids 145:141–145.

    Google Scholar 

  16. Pekala RW, Hrubesh LW (eds) (1995) Proceedings of the Fourth International Symposium on Aerogels (ISA 4), J Non-Cryst Solids 186:159–167.

    Google Scholar 

  17. Phalippou J, Vacher R (eds) (1998) Proceedings of the Fifth International Symposium on Aerogels (ISA 5), J Non-Cryst Solids 225:220–225.

    Google Scholar 

  18. Ashley CS, Brinker CJ, Smith DM (eds) (2001) Proceedings of the Sixth International Symposium on Aerogels (ISA6), Albuquerque, NM, USA (2000) J Non-Cryst Solids 285:295.

    Google Scholar 

  19. Fricke J, Emmerling A (1992) Aerogels - preparation, properties, applications. Struct Bonding (Berlin) 77:37–87.

    Article  CAS  Google Scholar 

  20. Brinker CJ, Scherer GW (1990) Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Academic Press, New-York, USA: (a) p461; (b) p523; (c) p97.

    Google Scholar 

  21. Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF (1996) Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 26: 1007–1018.

    Article  CAS  Google Scholar 

  22. Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, Carroll KL (1997) Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water. Energy Fuels 11:337–347.

    Article  CAS  Google Scholar 

  23. Saliger R, Fischer U, Herta C, Fricke J (1998) High surface area carbon aerogels for supercapacitors. J Non-Cryst Solids 225: 81–85.

    Article  CAS  Google Scholar 

  24. Glora M, Wiener M, Petricˇevic´ R, Pro¨bstle H, Fricke J (2001) Integration of Carbon Aerogels in PEM Fuel Cells. J Non-Cryst Solids 285: 283–287.

    Article  CAS  Google Scholar 

  25. Pekala RW, Kong FM (1989) A synthetic route to organic aerogels – mechanism, structure, and properties. J Phys Colleg Suppl 50:c4–33.

    Google Scholar 

  26. Pekala RW, Alviso CT, Lemay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non-Cryst Solids 125: 67–75.

    Article  CAS  Google Scholar 

  27. Pekala RW, Alviso CT (1992) Carbon aerogels and xerogels. Mat Res Soc Symp Proc 270: 3–23.

    Article  CAS  Google Scholar 

  28. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non-Cryst Solids 188: 34–40.

    Article  CAS  Google Scholar 

  29. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24: 3221–3227.

    Article  CAS  Google Scholar 

  30. Ruben GC, Pekala RW, Tillotson TM, Hrubesh LW (1992) Imaging Aerogels at the Molecular Level. J Mater Sci 27:4341.

    Article  CAS  Google Scholar 

  31. Hench LL, West FK (eds) (1992) Chemical Processing of Advanced Materials; John Wiley & Sons: New York.

    Google Scholar 

  32. Attia YA (ed) (1994) Pekala RW, Mayer ST, Kaschmitter JL, Kong FM (1994) Carbon aerogels: an update on structure, properties, and applications. Plenum, New-York, Sol-gel Process Appls 369–377.

    Google Scholar 

  33. Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144: 309–311.

    Article  Google Scholar 

  34. Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35: 791–796.

    Article  CAS  Google Scholar 

  35. Attia SM, Wang J, Wu GM, Shen J, Ma JH (2002) Review on Sol-gel Derived Coatings:Process, Techniques and Optical Applications. J Mar Sci Technol 18: 211–218.

    CAS  Google Scholar 

  36. Reichenauer G, Emmerling A, Fricke J, Pekala RW (1998) Microporosity in carbon aerogels. J Non-Cryst Solids 225: 210–214.

    Article  CAS  Google Scholar 

  37. Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zheng GZ, Gui YS ( 2001) Morphological Effects on the Electrical and Electrochemical Properties of Carbon Aerogels, J Electrochem Soc 148:75–77.

    Article  Google Scholar 

  38. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35:1271–1278.

    Article  CAS  Google Scholar 

  39. Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids 225(1):64–68.

    Article  CAS  Google Scholar 

  40. Shen J, Wang J, Guo YZ, Attia SM, Zhou B (2000) Resorcinol-formaldehyde-derived carbon aerogel films. Proc SPIE 4086: 811–814.

    Article  CAS  Google Scholar 

  41. Shen J, Hou JQ, Guo YZ, Xue H, Wu GM, Zhou B (2005) Microstructure Control of RF and Carbon Aerogels Prepared by Sol-Gel Process. J Sol-Gel Sci Tech 36:131–136.

    Article  CAS  Google Scholar 

  42. Shen J, Wang J, Zhai JW, Guo YZ, Wu GM, Zhou B, Ni XY (2004) Carbon Aerogel Films Synthesized at Ambient Conditions. J Sol-Gel Sci Tech 31:209–213.

    Article  CAS  Google Scholar 

  43. Lin C, Ritter JA (2000) Carbonization and activation of solgel derived carbon xerogels. Carbon 38: 849–861.

    Article  CAS  Google Scholar 

  44. Biesmans G, Mertens A, Duffours L, Woignier T, Phallipou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non-Cryst Solids 225: 64–68.

    Article  CAS  Google Scholar 

  45. Pekala RW (1990) Synthetic control of molecular structure in organic aerogels. Mater Res Soc Proc 171: 285–291.

    Article  CAS  Google Scholar 

  46. Zhang SQ, Wang J, Shen J, Deng ZS, Lai ZQ, Zhou B, Attia SM, Chen LY (1999) The investigation of the adsorption character of carbon aerogels. Nanostruct Mater 11:375-381.

    Article  CAS  Google Scholar 

  47. Bock V, Nilsson O, Blumm J, Fricke J (1995) Thermal properties of carbon aerogels. J Non-Cryst Solids 185: 233–239.

    Article  CAS  Google Scholar 

  48. Alviso CT, Pekala RW, Gross J, Lu X, Caps R, Fricke J (1996) Resorcinol–formaldehyde and carbon aerogel microspheres. Micropor Macropor Mater 431: 521–525.

    CAS  Google Scholar 

  49. Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors. Carbon 40: 2955–2959.

    Article  CAS  Google Scholar 

  50. Biesmans G, Randall D, Francis E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non-Cryst Solids 225:36–40.

    Article  CAS  Google Scholar 

  51. Zhang R, Lu Y, Zhan L, Liang X, Wu G, Ling L (2002) Monolithic carbon aerogels from sol–gel polymerization of phenolic resoles and methylolated melamine. Carbon 41:1660–1663.

    Article  CAS  Google Scholar 

  52. Yamashita J, Ojima T, Shioya M, Hatori H, Yamada Y (2003) Organic and carbon aerogels derived from poly(vinyl chloride). Carbon 41:285–294.

    Article  CAS  Google Scholar 

  53. Wang J, Golra M, Petricevic R (2001) Carbon Cloth Reinforced Carbon Aerogel Films Derived from Resorcinol Formaldehyde. J Porous Mater 8: 159–165.

    Article  CAS  Google Scholar 

  54. Bock V, Emmerling A, Saliger R, Fricke J (1997) Structural Investigation of Resorcinol Formaldehyde and Carbon Aerogels Using SAXS and BET. J Porous Mater 4: 287–294.

    Article  CAS  Google Scholar 

  55. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non-Cryst Solids 188: 226–234.

    Article  CAS  Google Scholar 

  56. Wang J, Zhang SQ, Shen J, Guo YZ, Attia SM, Zhou B, Lai ZQ, Zheng GZ, Gui YS (2001) Electrical transport properties of carbon aerogels. J Porous Mater 8:167–170.

    Article  CAS  Google Scholar 

  57. Pekala RW, Hrubesh LW (eds) (1995) Proceedings of the Fourth International Symposium on Aerogels (ISA 4), J Non-Cryst Solids 186:159–162.

    Google Scholar 

  58. Mark HF, Othmer DF, Overberger CG, Serborg GT (eds) (1981) Encyclopedia of Chemial Technology, 13:39, Wiley, New York.

    Google Scholar 

  59. Shen J, Han WN, Mi YJ, Ou YL, Wu GM, Zhou B, Zhang ZH, Ni XY, Niu XX, Wang GQ, Wang PQ,.Wang QF (2008) Nanostructure Control of Carbon Aerogels and the Application in Lithium Ion Cells. 2nd IEEE International Nanoelectronics Conference (INEC) (2008):74–77.

    Google Scholar 

  60. Pekala RW (1989) Low density, resorcinol-formaldehyde aerogels. US Patent 4873218 assigned to The United States Department of Energy.

    Google Scholar 

  61. Al-Muhtaseb SA, Ritter JA (2003) Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv Mater 15:101–114.

    Article  CAS  Google Scholar 

  62. Despetis F, Barral K, Kocon L, Phalippou J (2000) Effect of aging on mechanical properties of resorcinol-formaldehyde gels. J Sol-Gel Sci Tech 19: 829-831.

    Article  CAS  Google Scholar 

  63. LeMay JD, Tillotson TM, Hrubesh LW, Pekala RW (1990) Microstructural dependence of aerogel mechanical properties. Mat Res Soc Sym Proc 180:321–324.

    Article  CAS  Google Scholar 

  64. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon 38: 1099–1105.

    Article  CAS  Google Scholar 

  65. Petricevic R, Glora M, Fricke J (2001) Planar fibre reinforced carbon aerogels for application in PEM fuel cells. Carbon 39: 857–867.

    Article  CAS  Google Scholar 

  66. Zanto EJ, Al-Muhtaseb SA, Ritter JA (2002) Sol-gel-derived carbon aerogels and xerogels: Design of experiments approach to materials synthesis. Ind Eng Chem Res 41: 3151–3162.

    Article  CAS  Google Scholar 

  67. Kaschmitter JL, Mayer ST, Pekala RW (1998) Process for producing carbon foams for energy storage devices. US Patent 5789338 assigned to Regents of the University of California.

    Google Scholar 

  68. Mayer ST, Pekala RW, Kaschmitter JL (1993) The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc 140: 446–451.

    Article  CAS  Google Scholar 

  69. Liang CH, Sha GY, Guo SC (2000) Resorcinol-formaldehyde aerogels prepared by supercritical acetone drying. J Non-Cryst Solids 271: 167–170.

    Article  CAS  Google Scholar 

  70. Berthon S, Barbieri O, Ehrburger-Dolle F, Geissler E, Achard P, Bley F, Hecht AM, Livet F, Pajonk GM, Pinto N, Rigaci A, Rochas C (2001) DLS and SAXS investigations of organic gels and aerogels. J Non-Cryst Solids 285: 154–161.

    Article  CAS  Google Scholar 

  71. Guo YZ, Shen J, Wang J (2001) Carbon aerogels dried at ambient conditions. New Carbon 16: 55-57.

    CAS  Google Scholar 

  72. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Preparation of mesoporous carbon by freeze drying. Carbon 37: 2049–2055.

    Article  CAS  Google Scholar 

  73. Kocklenberg R, Mathieu B, Blacher S, Pirard R, Pirard JP, Sobry R, Van den Bossche G (1998) Texture control of freeze-dried resorcinol-formaldehyde gels. J Non-Cryst Solids 225: 8–13.

    Article  CAS  Google Scholar 

  74. Wang J, Saliger R, Fricke J (2001) Carbon cloth reinforced carbon aerogel films derived from resorcinol formaldehyde. J Porous Mat 8:159–165.

    Article  CAS  Google Scholar 

  75. Brinker CJ, Scherer GW (eds) (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press Inc, USA.

    Google Scholar 

  76. Fricke J, Emmerling A (1998) Aerogels - Recent progress in production techniques and novel applications. J Sol-Gel Sci Technol. 13:299–303.

    Article  CAS  Google Scholar 

  77. Yamamoto Y, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288: 46–55.

    Article  CAS  Google Scholar 

  78. Kuhn J, Brandt R, Mehling H, Petricevic R, Fricke J (1998) In situ infrared observation of the pyrolysis process of carbon aerogels. J Non-Cryst Solids 225: 58–63.

    Article  CAS  Google Scholar 

  79. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225: 74–80.

    Article  CAS  Google Scholar 

  80. Tamon H, Ishizaka H, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35:791–796.

    Article  CAS  Google Scholar 

  81. Yamamoto Y, Nishimura T, Suzuki T, Tamon H (2000) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288: 46–55.

    Article  Google Scholar 

  82. Yamamoto T, Yoshida T, Suzuki T, Mukai SR and Tamon H (2002) Dynamic and static light scattering study on the sol–gel transition of resorcinol–formaldehyde aqueous solution. J Colloid Interface Sci 245: 391–396.

    Article  CAS  Google Scholar 

  83. Saliger R, Bock V, Petricevic R, Tilloston T, Geis S, Fricke J (1997) Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non-Cryst Solids 221: 144–150.

    Article  CAS  Google Scholar 

  84. Frackowiak E. Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39: 937–950.

    Article  CAS  Google Scholar 

  85. Fauteux D, Koksbang R (1993) Rechargeable lithium battery anodes. Alternatives to metallic lithium. J Appl Chem 23: 1–10.

    CAS  Google Scholar 

  86. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10: 725–763.

    Article  CAS  Google Scholar 

  87. Dahn JR, Zheng T, Liu YH, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270: 590–593.

    Article  CAS  Google Scholar 

  88. Zheng T, Xing W, Dahn JR (1996) Carbons prepared from coals for anodes of lithium-ion cells. Carbon 34: 1501–1507.

    Article  CAS  Google Scholar 

  89. Liu W, Zhao YH, Nguyen J, Jiang Y Li, Q, Lavernia EJ (2009) Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphenes. Carbon 47: 3452–3460.

    Google Scholar 

  90. Liu C, Fan YY, Liu M, Cong H T, Cheng H M, Dresselhaus M S (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286: 1127–1129.

    Article  CAS  Google Scholar 

  91. Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem, Int Ed 47: 4966–81.

    Article  CAS  Google Scholar 

  92. Meng S, Kaxiras E, Zhang ZY (2007) Metal-diboride nanotubes as high-capacity hydrogen storage media. Nano Lett 7: 663–697.

    Article  CAS  Google Scholar 

  93. Siegel DJ, Wolverton C, Ozolin V (2007) Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures. Phys Rev B 76: 134102-134107.

    Article  CAS  Google Scholar 

  94. Dillon AC, Heben MJ (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A: Mater Sci Process 72:133–142.

    Article  CAS  Google Scholar 

  95. Oostinga JB, Heersche HB, Liu XL, Morpurgo AF, Vandersypen LMK (2008) Gate-induced insulating state in bilayer grapheme devices. Nature Mater 7: 151–157.

    Article  CAS  Google Scholar 

  96. Geim AK, Novoselov KS (2007) The rise of grapheme. Nature Mater 6: 183–191.

    Article  CAS  Google Scholar 

  97. Lherbier A, Blase X, Niquet YM, Triozon F, Roche S (2008) Charge transport in chemically doped 2D graphene. Phys Rev Lett 101: 036808–036811.

    Article  CAS  Google Scholar 

  98. Li Z (2000) Theory and large-scale application prospect of carbon-based adsorptive hydrogen storage materials. Mater Rev 14: 3–5.

    Google Scholar 

  99. Shang FL, Yang HT, Han HT (2006) Progress in porous hydrogen storage materials. Chem Eng J 20: 58–61.

    CAS  Google Scholar 

  100. Mark Thomas K (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120: 389–398.

    Article  CAS  Google Scholar 

  101. Kabbour H, Baumann TF, Satcher Jr JH, Saulnier A, Ahn CC (2006) Toward new candidates for hydrogen storage: High-surface-area carbon aerogels. Chem Mater 18: 6085–6087.

    Article  CAS  Google Scholar 

  102. Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 42: 169–175.

    Article  CAS  Google Scholar 

  103. Kima J, Gratea JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61: 1017-1026.

    Article  CAS  Google Scholar 

  104. Hartmann M (2005) Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chem Mater 17: 4577–4593.

    Article  CAS  Google Scholar 

  105. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18: 2073–2094.

    Article  CAS  Google Scholar 

  106. Hu ZH, Srinivasan MP, Ni Y (2000) Preparation of mesoporous high-surface-area activated carbon. Adv Mater 12: 62.

    Article  CAS  Google Scholar 

  107. Yang T, Lua AC (2003) Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions. J Colloid Interface Sci 267: 408-417.

    Article  CAS  Google Scholar 

  108. Pekala RW, Kong F M (1989)Resorcinol-Formaldehyde Aerogels and their Carbonized Derivatives. Polym Prepr 30: 221–223.

    Google Scholar 

  109. Fu R, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher JH (2003)The Fabrication and Characterization of Carbon Aerogels by Gelation and Supercritical Drying in Isopropanol. Adv Funct Mater 13: 558–562.

    Google Scholar 

  110. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103: 7743–7746.

    Article  CAS  Google Scholar 

  111. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem Commun 16: 2125–2127.

    Article  CAS  Google Scholar 

  112. Vinu A, Streb C, Hartmann M (2003) Adsorption of cytochrome c on new mesoporous carbon molecular sieves. J Phys Chem B 107: 8297–8299.

    Article  CAS  Google Scholar 

  113. Long DH, Zhang R, Qiao WM, Zhang L, Liang XY, Ling LC (2009) Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes. J Colloid Interface Sci 331: 40–46.

    Article  CAS  Google Scholar 

  114. Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes: Electrochemical characterization. J Power Sources 166: 104–111.

    Article  CAS  Google Scholar 

  115. Du H, Li B, Kang F, Fu R, Zeng Y (2007) Carbon aerogel supported Pt–Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45: 429–435.

    Article  CAS  Google Scholar 

  116. Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N (2005) Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int. J Hydrol Eng 30: 149–158.

    Article  CAS  Google Scholar 

  117. Kalpana D, Omkumar KS, Kumar SS, Renganathan NG (2006) A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochem Acta 52: 1309–1315.

    Article  CAS  Google Scholar 

  118. Zhang SQ, Huang CG, Zhou ZY, Li Z (2002) Investigation of the microwave absorbing properties of carbon aerogels. Mater Sci Eng B 90: 38–41.

    Article  Google Scholar 

  119. Wu DC, Fu RW (2006) Synthesis of organic and carbon aerogels from phenol–furfural by two-step polymerization. Microporous Mesoporous Mater 96: 115–121.

    Article  CAS  Google Scholar 

  120. Czakkel O, Marthi K, Geissler E, Laszlo K (2005) Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Microporous Mesoporous Mater 86: 124–133.

    Article  CAS  Google Scholar 

  121. Job N, Thery A, Pirard R, Marien J, Kocon L, Rouzaud J N, Beguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon 43: 2481–2494.

    Article  CAS  Google Scholar 

  122. Moreno-Castilla C, Maldonado-Ho´dar F J (2005) Carbon aerogels for catalysis applications: An overview. Carbon 43 :455–465.

    Article  CAS  Google Scholar 

  123. Caps R, Doell G, Fricke J, Heinemann E, Hetfleisch J (1989) Thermal transport in monolithic silica aeroge.lIn Vacher R, Phalippou J, Pelous J, Woignier T (eds) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev Phys Appl Colloq 24-C4:113–118.

    Google Scholar 

  124. Farmer JC, Fix DV, Mack GV (1996) Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc 143: 159–169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, J., Guan, D.Y. (2011). Preparation and Application of Carbon Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics