Skip to main content

Abstract

Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, S., Furuyu, A., Saito, T., and Takayama, K.I. (1962). Method of producing L-malic acid by fermentation. US Patent 3, 063, 910.

    Google Scholar 

  • Aida, K. and Foster, J.W. (1962). Incorporation of molecular oxygen into trans-L-epoxysuccinic acid by Aspergillus fumigatus. Nature 196, 672.

    PubMed  CAS  Google Scholar 

  • Albright, F. and Schroepfer, G.J. Jr. (1971). l-trans-2,3-Epoxy succinic acid a new substrate for fumarase. J. Biol. Chem. 246, 1350–1357.

    PubMed  CAS  Google Scholar 

  • Alvarez-Vasquez, F., González-Alcón, C., and Torres, N.V. (2000). Metabolism of citric acid production by Aspergillus niger: Model definition, steady-state analysis and constrained optimization of citric acid production rate. Biotechnol. Bioeng. 70, 82–108.

    CAS  Google Scholar 

  • Arisan-Atac, I., Wolschek, M.F., and Kubicek, C.P. (1996). Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol. Lett. 140, 77–83.

    PubMed  CAS  Google Scholar 

  • Arts, E., Kubicek, C.P., and Röhr, M. (1987). Regulation of phosphofructokinase from Aspergillus niger. Effect of fructose 2,6-bisphosphate on the action of citrate, ammonium ions and AMR J. Gen. Microbiol. 133, 1195–1200.

    CAS  Google Scholar 

  • Baniel, A.M., Blumberg, R., and Hajdu, K. (1981). Recovery of acids from aqueous solutions. US Patent, 4,275,234.

    Google Scholar 

  • Battat, E., Peleg, Y., Bercovitz, A., Rokem, J.S., and Goldberg, I. (1991). Optimization of L-malic acid production by Aspergillus flavus in a stirred fermenter. Biotechnol. Bioeng. 37, 1108–1116.

    Google Scholar 

  • Batti, M. and Schweiger, L.B. (1963). Process for the production of itaconic Acid. US Patent 3, 078, 217.

    Google Scholar 

  • Bencina, M., Panneman, H., Ruijter, G.J.G., Legisa, M., and Visser, J. (1997). Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. Microbiology 143, 1211–1220.

    PubMed  CAS  Google Scholar 

  • Bentley, R. and Thiessen, C.P. (1957a). Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with 14C-labeled substrates. J. Biol. Chem. 226, 673–687.

    PubMed  CAS  Google Scholar 

  • Bentley, R. and Thiessen, C.P. (1957b). Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role of citrate. J. Biol. Chem. 226, 689–701.

    PubMed  CAS  Google Scholar 

  • Bentley, R. and Thiessen, C.P. (1957c). Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 226, 703–720.

    PubMed  CAS  Google Scholar 

  • Bentley, R. and Thiessen, C.P. (1955). cis-Aconitic decarboxylase. Science 122, 330.

    PubMed  CAS  Google Scholar 

  • Bercovitz, A., Peleg, Y., Battat, E., Rokem, J.S., and Goldberg, I. (1990). Localization of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl. Environ. Microbiol. 56, 1594–1597.

    PubMed  CAS  Google Scholar 

  • Birkinshaw, J.H., Bracken, A., and Raistrick, H. (1945). Metabolic products of Aspergillus fumigatus Fresenius. Biochem. J. 39, 70–72.

    PubMed  CAS  Google Scholar 

  • Blom, R.H., Pfeifer, V.F., Moyer, A.J., Traufler, D.H., Conway, H.F., Crocker, C.K., Farison, R.E., and Hannibal, D.V. (1952). Sodium gluconate production: Fermentation with Aspergillus niger. Ind. Eng. Chem. 44, 435–440.

    CAS  Google Scholar 

  • Bloom, S.J. and Johnson, M.J. (1962). The pyruvate carboxylase of Aspergillus niger. J. Biol. Chem. 237, 2718–2720.

    PubMed  CAS  Google Scholar 

  • Boddy, L.M., Berges, T., Barreau, C., Vainstein, M.H., Dobson, M.J., Balance, D.J., and Peberdy, J.F. (1993). Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr. Genet. 24, 60–66.

    PubMed  CAS  Google Scholar 

  • Boles, E. and Hollenberg, C.P. (1997). The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85–111.

    PubMed  CAS  Google Scholar 

  • Bomstein, R.A. and Johnson, M.J. (1952). The mechanism of formation of citrate and oxalate by Aspergillus niger. J. Biol. Chem. 198, 143–153.

    PubMed  CAS  Google Scholar 

  • Bonnarme, P., Gillet, B., Sepulchre, A.M., Role, C., Beloeil, J.C., and Ducrocq, C. (1995). Itaconate biosynthesis in Aspergillus terreus. J. Bacteriol. 177, 3573–3578.

    PubMed  CAS  Google Scholar 

  • Calam, C.T., Oxford, A.E., and Raistrick, H. (1939). CLXXXIII. Studies in the biochemistry of micro-organisms. LXni. Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thorn. Biochem. J. 33, 1488–1495.

    PubMed  CAS  Google Scholar 

  • Cleland, W.W., and Johnson, M.J. (1954). Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208, 679–689.

    PubMed  CAS  Google Scholar 

  • Cornish-Bowden, A., Hofmeyr, J.-H.S., and Cardenas, M.L. (1995). Strategies for manipulating metabolic fluxes in biotechnology. Bioorg. Chem. 23, 439–449.

    CAS  Google Scholar 

  • Coulthard, C.E., Michaelis, R., Short, W.F., Sykes, G., Skrimshire, G.E.H., Standfast, A.F.B., Birkinshaw, J.H., and Raistrick, H. (1945). Notatin: An anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochem. J. 39, 24–36.

    PubMed  CAS  Google Scholar 

  • Currie, J.N. (1917). Citric acid fermentation. J. Biol. Chem. 31, 15–37.

    CAS  Google Scholar 

  • DOE Joint Genome Institute (2002). JGI Programs: White Rot Genome Project.; http://www.jgi.doe.gov/programs/whiterot.htm.

  • Dong, X.Y., Bai, S., and Sun, Y. (1996). Production of L(+)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnol. Lett. 18, 225–228.

    CAS  Google Scholar 

  • Du, J.X., Cao, N.J., Gong, C.S., and Tsao, G.T. (1998). Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter. Appl. Biochem. Biotechnol. 70, 323–329.

    PubMed  Google Scholar 

  • Dutton, M.V. and Evans, C.S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42, 881–895.

    CAS  Google Scholar 

  • Ehrlich, F. (1911). Formation of fumaric acid by means of molds. Ber. Dtsch. Chem. Ges. 44, 3737–3742.

    Google Scholar 

  • Eimhjellen, K.E. and Larsen, H. (1955). The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. Biochem. J. 60, 139–147.

    PubMed  CAS  Google Scholar 

  • Foster, J.W. (1949). Chemical activities of fungi. Academic Press, New York.

    Google Scholar 

  • Foster, J.W. and Waksman, S.A. (1939). The production of fumaric acid by molds belonging to the genus Rhizopus. J. Am. Chem. Soc. 61, 127–135.

    CAS  Google Scholar 

  • Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S., Chakraborty, S. et al., (1990). Glucose oxidase from Aspergillus niger—cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J. Biol. Chem. 265, 3793–3802.

    PubMed  CAS  Google Scholar 

  • Friedberg, D., Peleg, Y., Monsonego, A., Maissi, S., Battat, E., Rokem, J.S., and Goldberg, I. (1995). The fumR gene encoding fumarase in the filamentous fungus Rhizopus oryzae—cloning, structure and expression. Gene 163, 139–144.

    PubMed  CAS  Google Scholar 

  • Gallmetzer, M., Meraner, J., and Burgstaller, W. (2002). Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions. FEMS Microbiol. Lett. 210, 221–225.

    PubMed  CAS  Google Scholar 

  • Gibbs, M. and Gastel, R. (1953). Glucose dissimilation by Rhizopus. Arch. Biochem. Biophys. 43, 33–38.

    PubMed  CAS  Google Scholar 

  • Gibson, Q.H., Swoboda, B.E.P., and Massey, V. (1964). Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3934.

    PubMed  CAS  Google Scholar 

  • Gleason, F.H., Nolan, R.A., Wilson, A.C., and Emerson, R. (1966). D(-)-Lactate dehydrogenase in lower fungi. Science 152, 1272–1273.

    PubMed  CAS  Google Scholar 

  • Gradisnik-Grapulin, M. and Legisa, M. (1997). A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl. Environ. Microbiol 63, 2844–284

    PubMed  CAS  Google Scholar 

  • Guebel, D.V. and Torres Danas, N.V. (2001). Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model. Electron. J. Biotechnol. 4, 1–14.

    Google Scholar 

  • Guevarra, E.D. and Tabuchi, T. (1990). Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malicacids by strains of the genus Ustilago. Agric. Biol. Chem. 54, 2353–2358.

    CAS  Google Scholar 

  • Gyamerah, M. (1995a). Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl. Microbiol. Biotechnol. 44, 356–361.

    CAS  Google Scholar 

  • Gyamerah, M.H. (1995b). Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 44, 20–26.

    Google Scholar 

  • Habison, A., Kubicek, C.P., and Röhr, M. (1983). Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–676.

    PubMed  CAS  Google Scholar 

  • Hamamci, H. and Ryu, D.D.Y. (1994). Production of L(+)-lactic acid using immobilized Rhizopus oryzae— Reactor performance based on kinetic model and simulation. Appl. Biochem. Biotechnol. 44, 125–133.

    CAS  Google Scholar 

  • Hang, YD., Hamamci, H., and Woodams, E.E. (1989). Production of L(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol. Lett. 11, 119–120.

    CAS  Google Scholar 

  • Haskins, R.H., Thorn, J.A., and Boothroyd, B. (1955). Biochemistry of the Ustilaginales. XI. Metabolic products of Ustilago zeae in submerged culture. Can. J. Microbiol. 1, 749–756.

    PubMed  CAS  Google Scholar 

  • Hayaishi, O., Shimazono, H., Katagiri, M., and Saito, Y. (1956). Enzymatic formation of oxalate and acetate from oxaloacetate. J. Am. Chem. Soc. 78, 5126–5127.

    CAS  Google Scholar 

  • Heiland, S., Radovanovic, N., Höfer, M., Winderickx, J., and Lichtenberg, H. (2000). Multiple hexose transporters of Schizosaccharomyces pombe. J. Bacteriol. 182, 2153–2162.

    PubMed  CAS  Google Scholar 

  • Hesse, S.J.A., Ruijter, G.J.G., Dijkema, C., and Visser, J. (2000). Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J. Biotechnol. 77, 5–15.

    PubMed  CAS  Google Scholar 

  • Hesse, S.J.A., Ruijter, G.J.G., Dijkema, C.O.R., and Visser, J. (2002). Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur. J. Biochem. 269, 3485–3494.

    PubMed  CAS  Google Scholar 

  • Jaklitsch, W.M., Kubicek, C.P, and Scrutton, M.C. (1991). Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol. 37, 823–827.

    PubMed  CAS  Google Scholar 

  • Jermyn, M.A. (1960). Studies on the glucono-delta-lactonase of Pseudomonas fluorescens. Biochim. Biophys. Acta 37, 78–92.

    PubMed  CAS  Google Scholar 

  • Joseph-Horne, T.I.M., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: A fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179–195.

    PubMed  CAS  Google Scholar 

  • Kane, J., Finlay, A., and Amann, P. (1945). Production of itaconic acid. US Patent 2, 385,283.

    Google Scholar 

  • Kautola, H., Vahvaselka, M., Linko, YY., and Linko, P. (1985). Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnol. Lett. 7, 167–172.

    CAS  Google Scholar 

  • Kelley, R.L. and Reddy, C.A. (1986). Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J. Bacteriol. 166, 269–274.

    PubMed  CAS  Google Scholar 

  • Kelley, R.L. and Reddy, C.A. (1988). Glucose oxidase of Phanerochaete chrysosporium. Meth. Enzymol. 161, 307–316.

    PubMed  CAS  Google Scholar 

  • Kenealy, W., Zaady, E., du Preez, J.C., Stieglitz, B., and Goldberg, I. (1986). Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl. Environ. Microbiol. 52, 128–133.

    PubMed  CAS  Google Scholar 

  • Kilian, S.G., van Deemter, A., Kock, J.L.F., and du Preez, J.C. (1991). Occurrence and taxonomic aspects of proton movements coupled to sugar transport in the yeast genus Kluyveromyces. Antonie Van Leeuwenhoek 59, 199–206.

    PubMed  CAS  Google Scholar 

  • Kinoshita, K. (1931). Production of itaconic acid and mannitol by a new mold, Aspergillus itaconicus. Acta Phytochim. 5, 271–287.

    CAS  Google Scholar 

  • Kirimura, K., Hirowatari, Y., and Usami, S. (1987). Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. Agric. Biol. Chem. 51, 1299–1304.

    CAS  Google Scholar 

  • Kirimura, K., Yoda, M., Ko, I., Oshida, Y., Miyake, K., and Usami, S. (1999a). Cloning and sequencing of the chromosomal DNA and cDNA encoding the mitochondrial citrate synthase of Aspergillus niger WU-2223L. J. Biosci. Bioeng. 88, 237–243.

    PubMed  CAS  Google Scholar 

  • Kirimura, K., Yoda, M., Kumatani, M., Ishii, Y., Kino, K., and Usami, S. (2002). Cloning and expression of Aspergillus niger icdA gene encoding mitochondrial NADP+-specific isocitrate dehydrogenase. J. Biosci. Bioeng. 93, 136–144.

    PubMed  CAS  Google Scholar 

  • Kirimura, K., Yoda, M., Shimizu, H., Sugano, S., Mizuno, M., Kino, K., and Usami, S. (2000). Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase, to citric acid production in Aspergillus niger. Biosci. Biotechnol. Biochem. 64, 2034–2039.

    PubMed  CAS  Google Scholar 

  • Kirimura, K., Yoda, M., and Usami, S. (1999b). Cloning and expression of the cDNA encoding an alternative oxidase gene from Aspergillus niger WU-2223L. Curr. Genet. 34, 472–477.

    PubMed  CAS  Google Scholar 

  • Kleppe, K. (1966). The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger. Biochemistry 5, 139–143.

    PubMed  CAS  Google Scholar 

  • Kosakai, Y., Park, Y.S., and Okabe, M. (1997). Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 55, 461–470.

    PubMed  CAS  Google Scholar 

  • Kubicek, C.P., Hampel, W., and Röhr, M. (1979). Manganese deficiency leads to elevated amino-acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123, 73–80.

    PubMed  CAS  Google Scholar 

  • Kubicek, C.P. and Röhr, M. (1980). Regulation of citrate synthase from the citric acid accumulating fungus, Aspergillus niger. Biochim. Biophys. Acta 615, 449–457.

    PubMed  CAS  Google Scholar 

  • Kubicek, C.P. and Röhr, M. (1985). Aconitase and citric acid fermentation by Aspergillus niger. Appl. Environ. Microbiol. 50, 1336–1338.

    PubMed  CAS  Google Scholar 

  • Kubicek, C.P. and Röhr, M. (1986). Citric acid fermentation. Crit. Rev. Biotechnol. 3, 331–374.

    CAS  Google Scholar 

  • Kubicek, C.P., Schreferl-Kunar, G., Wöhrer, W., and Röhr, M. (1988). Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl. Environ. Microbiol. 54, 633–637.

    PubMed  CAS  Google Scholar 

  • Kubicek, C.P., Zehentgruber, O., El-Kalak, H., and Röhr, M. (1980). Regulation of citric acid production by oxygen: Effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 101–115.

    CAS  Google Scholar 

  • Kusai, K., Sekuzu, I., Hagihara, B., Okunuki, K., Yamauchi, S., and Nakai, M. (1960). Crystallization of glucose oxidase from Penicillium amagasakiense. Biochim. Biophys. Acta 40, 555–557.

    PubMed  CAS  Google Scholar 

  • La Nauze, J.M. (1966). Aconitase and isocitric dehydrogenases of Aspergillus niger in relation to citric acid production. J. Gen. Microbiol. 44, 73–81.

    PubMed  CAS  Google Scholar 

  • Lantero, O.J. and Shetty, J.K. (2001). Process for the preparation of gluconic acid and gluconic acid produced thereby. US Patent 20020119583.

    Google Scholar 

  • Larsen, H. and Eimhjellen, K.E. (1955). The mechanism of itaconic acid formation by Aspergillus terreus. 1. The effect of acidity. Biochem. J. 60, 135–139.

    PubMed  CAS  Google Scholar 

  • Legisa, M. and Bencina, M. (1994). Evidence for the activation of 6-phosphofructo-1-kinase by cAMP-dependent protein kinase in Aspergillus niger. FEMS Microbiol. Lett. 118, 327–333.

    PubMed  CAS  Google Scholar 

  • Legisa, M. and Grdadolnik, S.G. (2002). Influence of dissolved oxygen concentration on intracellular pH and consequently on growth rate of Aspergillus niger. Food Technol. Biotechnol. 40, 27–

    CAS  Google Scholar 

  • Legisa, M. and Kidric, J. (1989). Initiation of citric acid accumulation in the early stages of Aspergillus niger growth. Appl. Microbiol. Biotechnol. 31, 453–457.

    CAS  Google Scholar 

  • LéJohn, H.B. (1971). D(-)-Lactate dehydrogenases in fungi: Kinetics and allosteric inhibition by guanosine triphosphate. J. Biol. Chem. 246, 2116–2126.

    PubMed  Google Scholar 

  • Lenz, H., Wunderwald, P., and Eggerer, H. (1976). Partial purification and some properties of oxalacetase from Aspergillus niger. Euro. J. Biochem. 65, 225–236.

    CAS  Google Scholar 

  • Lewis, K.F. and Weinhouse, S. (1951). Studies on the mechanism of citric acid production in Aspergillus niger. J. Am. Chem. Soc. 73, 2500–25

    CAS  Google Scholar 

  • Ling, E.T.M., Dibble, J.T., Houston, M.R., Lockwood, L.B., and Elliott, L.P. (1978). Accumulation of l-trans-2,3-epoxysuccinic acid and succinic acid by Paecilomyces variota. Appl. Environ. Microbiol. 35, 1213–1215.

    PubMed  CAS  Google Scholar 

  • Litchfield, J.H. (1996). Microbiological production of lactic acid Academic Press, New York, (pp. 45–95).

    Google Scholar 

  • Lockwood, L.B. and Reeves, M.D. (1945). Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch. Biochem. 6, 455–469.

    CAS  Google Scholar 

  • Lockwood, L.B., Ward, G.E., and May, O.E. (1936). The physiology of Rhizopus oryzae. J. Agric. Res. 53, 849–857.

    CAS  Google Scholar 

  • Longacre, A., Reimers, J.M., Gannon, J.E., and Wright, B.E. (1997). Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genet. Biol. 21, 30–39.

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia, R. (2002). Citric acid. In Kirk-Othmer (ed) Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc., New York, USA.

    Google Scholar 

  • Ma, H., Kubicek, C.P, and Röhr, M. (1985). Metabolic effects of manganese deficiency in Aspergillus niger. Evidence for increased protein degradation. Arch. Microbiol. 141, 266–268.

    PubMed  CAS  Google Scholar 

  • Margulies, M. and Vishniac, W. (1961). Dissimilation of glucose by the MX strain of Rhizopus. J. Bacteriol. 81, 1–9.

    PubMed  CAS  Google Scholar 

  • Mark, C.G. and Romano, A.H. (1971). Properties of the hexose transport systems of Aspergillus nidulans. Biochim. Biophys. Acta 249, 216–226.

    PubMed  CAS  Google Scholar 

  • Martin, S.M., Wilson, P.W, and Burris, R.H. (1950). Citric acid formation from 14CO2 by Aspergillus niger. Arch. Biochem. 26, 103–111.

    CAS  Google Scholar 

  • Martin, W.R., and Foster, J.W. (1955). Production of trans-L-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartaric acid. J. Bacteriol. 70, 405–414.

    PubMed  CAS  Google Scholar 

  • Mattey, M. (1992). The production of organic acids. Crit. Rev. Biotechnol. 12, 87–132.

    PubMed  CAS  Google Scholar 

  • McQuigg, D.W., Marston, C., Fitzpatrick, G., Crowe, E., and Vorhies, S. (2000). Processes for recovering citric acid. US Patent 6,137,004.

    Google Scholar 

  • Meixner-Monori, B., Kubicek, C.P., Harrer, W., Schreferl, G., and Röhr, M. (1986). NADP-specific isocitrate dehydrogenase from the citric acid accumulating fungus Aspergillus niger. Biochem. J. 236, 549–558.

    PubMed  CAS  Google Scholar 

  • Meixner-Monori, B., Kubicek, C.P., and Röhr, M. (1984). Pyruvate kinase from Aspergillus niger a regulatory enzyme in glycolysis. Can. J. Microbiol. 30, 16–22.

    PubMed  CAS  Google Scholar 

  • Moyer, A.J., Umberger, E.J., and Stubbs, J.J. (1940). Fermentation of concentrated solutions of glucose to gluconic acid: Improved process. Ind. Eng. Chem. 32, 1379–1383.

    CAS  Google Scholar 

  • Mueller, H.-M. (1975). Oxalate accumulation from citrate by Aspergillus niger. I. Biosynthesis of oxalate from its ultimate precursor. Arch. Microbiol. 103, 185–190.

    CAS  Google Scholar 

  • Nelson, G.E.N., Traufler, D.H., Kelley, S.E., and Lockwood, L.B. (1952). Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Ind. Eng. Chem. 44, 1166–1168.

    CAS  Google Scholar 

  • Netik, A., Torres, N.V., Riol, J.-M., and Kubicek, C.P. (1997). Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophy. Acta 1326, 287–294.

    CAS  Google Scholar 

  • Nubel, R.C. and Ratajak, E.J. (1962). Process for producing itaconic acid. US Patent 3, 044, 941.

    Google Scholar 

  • O’Malley, J.J. and Weaver, J.L. (1972). Subunit structure of glucose oxidase from Aspergillus niger. Biochemistry 11, 3527–3532.

    PubMed  Google Scholar 

  • Ogawa, K., Nakajima-Kambe, T., Nakahara, T., and Kokufuta, E. (2002). Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels. Biomacromolecules 3, 625–631.

    PubMed  CAS  Google Scholar 

  • Osmani, S. and Scrutton, M.C. (1983). The sub cellular localization of pyruvate carboxylase and of some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–560.

    PubMed  CAS  Google Scholar 

  • Osmani, S. and Scrutton, M.C. (1985). The subcellular localization and regulatory properties of pyruvate carboxylase from Rhizopus arrhizus. Eur. J. Biochem. 147, 119–128.

    PubMed  CAS  Google Scholar 

  • Overman, S.A. and Romano, A.H. (1969). Role of pyruvate carboxylase in fumaric acid accumulation by Rhizopus nigricans. Bacteriol. Proc. 69, 128.

    Google Scholar 

  • Panneman, H., Ruijter, G.J.G., van den Broeck, H.C., Driever, E.T.M., and Visser, J. (1996). Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur. J. Biochem. 240, 518–525.

    PubMed  CAS  Google Scholar 

  • Panneman, H., Ruijter, G.J.G., van den Broeck, H.C., and Visser, J. (1998). Cloning and biochemical characterisation of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose-6-phosphate. Eur. J. Biochem. 258, 223–232.

    PubMed  CAS  Google Scholar 

  • Park, E.Y., Kosakai, Y., and Okabe, M. (1998). Efficient production of L-(+)-lactic acid using mycelial cottonlike flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol. Prog. 14, 699–704.

    PubMed  CAS  Google Scholar 

  • Pazur, J.H. (1966). Glucose oxidase from Aspergillus niger. Methods Enzymol. 9, 82–87.

    CAS  Google Scholar 

  • Pedersen, H., Christensen, B., Hjort, C., and Nielsen, J. (2000a). Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Metab. Eng. 2, 34–41.

    PubMed  CAS  Google Scholar 

  • Pedersen, H., Hjort, C., and Nielsen, J. (2000b). Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in Aspergillus niger. Mol. Gen. Genet. 263, 281–286.

    PubMed  CAS  Google Scholar 

  • Peksel, A., Torres, N.V., Liu, J., Juneau, G., and Kubicek, C.P. (2002). 13C-NMR Analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl. Microbiol. Biotechnol. 58, 157–163.

    PubMed  CAS  Google Scholar 

  • Peleg, Y., Barak, A., Scrutton, M.C., and Goldberg, I. (1989a). Malic acid accumulation by Aspergillus flavus. 3. 13C-NMR and isoenzyme analyses. Appl. Microbiol. Biotechnol. 30, 176–183.

    CAS  Google Scholar 

  • Peleg, Y., Battat, E., Scrutton, M.C., and Goldberg, I. (1989b). Isoenzyme pattern and subcellular localization of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl. Microbiol. Biotechnol. 32, 334–339.

    CAS  Google Scholar 

  • Peleg, Y., Stieglitz, B., and Goldberg, I. (1988). Malic acid accumulation by Aspergillus flavus. 1. Biochemical aspects of acid biosynthesis. Appl. Microbiol. Biotechnol. 28, 69–75.

    CAS  Google Scholar 

  • Pfeifer, VF., Vojnovich, C., and Heger, E.N. (1952). Itaconic acid by fermentation with Aspergillus terreus. Ind. Eng. Chem. 44, 2975–2980.

    CAS  Google Scholar 

  • Porro, D., Bianchi, M., Ranzi, B.M., Frontali, L., Vai, M., Winkler, A.A., and Alberghina, L. (2002). Yeast strains for the production of lactic acid transformed with a gene coding for lactic acid dehydrogenase. US Patent 6, 429, 006.

    Google Scholar 

  • Pritchard, G.G. (1973). Factors affecting the activity and synthesis of NAD-dependent lactate dehydrogenase in Rhizopus oryzae. J. Gen. Microbiol. 78, 125–137.

    CAS  Google Scholar 

  • Pritchard, G.G. (1971). An NAD-independent L-lactate dehydrogenase from Rhizopus oryzae. Biochim. Biophys. Acta 250, 25–34.

    PubMed  CAS  Google Scholar 

  • Prömper, C., Schneider, R., and Weiss, H. (1993). The role of the proton-pumping and alternative respiratory chain NADH: Ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur. J. Biochem. 216, 223–230.

    PubMed  Google Scholar 

  • Rhodes, R.A., Moyer, A.J., Smith, M.L., and Kelley, S.E. (1959). Production of fumaric acid by Rhizopus arrhizus. Appl. Microbiol. 7, 74–

    PubMed  CAS  Google Scholar 

  • Röhr, M., Kubicek, C.P., Zehentgruber, O., and Orthofer, R. (1987). Accumulation and partial reconsumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. 27, 235–239.

    Google Scholar 

  • Ruijter, G.J.G., Kubicek, C.P., and Visser, J. (2002). Production of organic acids by fungi. In H. D. Osiewacz (ed) The mycota: A comprehensive treatise on fungi as experimental systems for basic and applied research. Industrial Applications Springer-Verlag, Berlin, Germany, pp. 213–23

    Google Scholar 

  • Ruijter, G.J.G, Panneman, H., and Visser, J. (1998). Metabolic engineering of the glycolytic pathway in Aspergillus niger. Food Technol. Biotechnol. 36, 185–188.

    CAS  Google Scholar 

  • Ruijter, G.J.G., Panneman, H., and Visser, J. (1997). Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim. Biophys. Acta 1334, 317–326.

    PubMed  CAS  Google Scholar 

  • Ruijter, G.J.G., Panneman, H., Xu, D.-B., and Visser, J. (2000). Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol. Lett. 184, 35–40.

    PubMed  CAS  Google Scholar 

  • Ruijter, G.J.G., van de Vondervoort, P.J.I., and Visser, J. (1999). Oxalic acid production by Aspergillus niger: An oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569–2576.

    PubMed  CAS  Google Scholar 

  • Ruijter, G.J.G. and Visser, J. (1999). Characterization of Aspergillus niger phosphoglucose isomerase. use for quantitative determination of erythrose-4-phosphate. Biochimie 81, 267–272.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Inoue, T., and Tada, S. (1939). On the production of aethyleneoxide-alpha-beta-dicarboxylic acid by moulds. Zentr. Bakteriol. Parasitenk. Abt. II 100, 302–307.

    Google Scholar 

  • Schreferl, G., Kubicek, C.P., and Röhr, M. (1986). Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J. Bacteriol. 165, 1019–1022.

    PubMed  CAS  Google Scholar 

  • Shimi, I.R. and Nour El Dein, M.S. (1962). Biosynthesis of itaconic acid by Aspergillus terreus. Archive fur Mikrobiologie 44, 181–188.

    CAS  Google Scholar 

  • Shu, P. and Johnson, M.J. (1947). Effect of the composition of the sporulation medium on citric acid production by Aspergillus niger in submerged culture. J. Bacteriol. 54, 161–167.

    PubMed  CAS  Google Scholar 

  • Shu, P. and Johnson, M.J. (1948a). Citric acid production by submerged fermentation with Aspergillus niger. Ind. Eng. Chem. 40, 1202–1205.

    CAS  Google Scholar 

  • Shu, P. and Johnson, M.J. (1948b). The interdependence of medium constituents in citric acid production by submerged fermentation. J. Bacteriol. 56, 577–585.

    PubMed  CAS  Google Scholar 

  • Skory, C.D. (2001). Fungal lactate dehydrogenase gene and constructs for the expression thereof. US Patent 6, 268,189.

    Google Scholar 

  • Skory, C.D. (2000). Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl Environ. Microbiol. 66, 2343–2348.

    PubMed  CAS  Google Scholar 

  • Skory, CD., Freer, S.N., and Bothast, R.J. (1998). Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. Lett. 20, 191–194.

    CAS  Google Scholar 

  • Snell, R.L. and Lowery, CE. (1964). Calcium L (+) lactate and L (+) lactic acid production. US Patent 3,125,494.

    Google Scholar 

  • Swart, K., van de Vondervoort, P.J.I., Witteveen, C.F.B., and Visser, J. (1990). Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr. Genet. 18, 435–440.

    PubMed  CAS  Google Scholar 

  • Swoboda, B.E.P., and Massey, V. (1965). Purification and properties of the glucose oxidase from Aspergillus niger. J. Biol. Chem. 240, 2209–2215.

    PubMed  CAS  Google Scholar 

  • Tabuchi, T. (1991). Manufacture of itaconic acid with Ustilago. Japan Patent 3,035,785.

    Google Scholar 

  • Tamada, M., Begum, A.A., and Sadi, S. (1992). Production of L(+)-lactic acid by immobilized cells of Rhizopus oryzae with polymer supports prepared by gamma-ray induced polymerization. J. Ferment. Bioeng. 74, 379–383.

    CAS  Google Scholar 

  • TIGR (2002). The Aspergillus fumigatus genome database; http://www.tigr.org/tdb/e2k1/afu1/.

  • Title 21CFR173.280. (1984). Food and Drugs; Part 173-Secondary direct food additives permitted in food for human consumption; Subpart C—Solvents, lubricants, release agents and related substances; 173.280-solvent extraction process for citric acid.

    Google Scholar 

  • Title 21CFR184.1318. (1986). Food and Drugs; Part 184-Direct food substances affirmed as generally recognized as safe; Subpart B—Listing of specific substances affirmed as Gras; 184.1318-glucono delta lactone.

    Google Scholar 

  • Title 21CFR184.1033. (1994). Food and Drugs; Part 184-Direct food substances affirmed as generally recognized as safe; Subpart B-Listing of specific substances affirmed as Gras; 184.1033-citric acid.

    Google Scholar 

  • Todd, R.B., Andrianopoulos, A., Davis, M.A., and Hynes, M.J. (1998). FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J. 17, 2042–2054.

    PubMed  CAS  Google Scholar 

  • Torres, N.V. (1994). Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger: I. Model definition and stability of the steady state. Biotechnol. Bioeng. 44, 104–111.

    PubMed  CAS  Google Scholar 

  • Torres, N.V., Riol-Cimas, J.M., Wolschek, M., and Kubicek, C.P. (1996a). Glucose transport by Aspergillus niger: The low-affinity carrier is only formed during growth on high glucose concentrations. Appl. Microbiol. Biotechnol. 44, 790–794.

    CAS  Google Scholar 

  • Torres, N.V., Voit, E.O., and González-Alcón, C. (1996b). Optimization of nonlinear biotechnological process with linear programming: Application to citric acid production by Aspergillus niger. Biotechnol. Bioeng. 49, 247–258.

    PubMed  CAS  Google Scholar 

  • Vainstein, M.H. and Peberdy, J.F. (1991). Regulation of invertase in Aspergillus nidulans: Effect of different carbon sources. J. Gen. Microbiol. 137, 315–322.

    PubMed  CAS  Google Scholar 

  • Vroemen, A.J. and Beverini, M. (1999). Enzymatic production of gluconic acid or its salts. US Patent 5,897,995.

    Google Scholar 

  • Waksman, S.A. and Foster, J.W. (1938). Respiration and lactic acid production by a fungus of the genus Rhizopus. J. Agric. Res. 57, 873–899.

    CAS  Google Scholar 

  • Wallis, G.L.F., Hemming, F.W., and Peberdy, J.F. (1997). Secretion of two beta-fructofuranosidases by Aspergillus niger growing in sucrose. Arch. Biochem. Biophy. 345, 214–222.

    CAS  Google Scholar 

  • Wang, H.S. and LéJohn, H.B. (1974). Analogy and homology of the dehydrogenases of oomycetes. Part 2. Regulation by GTP of D-levo-lactic dehydrogenases and isozyme patterns. Can. J. Microbiol. 20, 575–580.

    PubMed  CAS  Google Scholar 

  • Ward, G.E., Lockwood, L.B., and May, O.E. (1938). Fermentation process for the manufacture of dextro-lactic acid. US Patent 2,132,712.

    Google Scholar 

  • Wariishi, H., Valli, K., and Gold, M.H. (1992). Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Kinetic mechanism and role of chelators. J. Biol. Chem. 267, 23688–23695.

    PubMed  CAS  Google Scholar 

  • Wayman, F.M. and Mattey, M. (2000). Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol. Bioeng. 67, 451–456.

    PubMed  CAS  Google Scholar 

  • Wilkoff, L.J. and Martin, W.R. (1963). Studies on the biosynthesis of trans-l-epoxysuccinic acid by Aspergillus fumigatus. J. Biol. Chem. 238, 843–846.

    PubMed  CAS  Google Scholar 

  • Willke, T. and Vorlop, K.D. (2001). Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56, 289–295.

    PubMed  CAS  Google Scholar 

  • Winskill, N. (1983). Tricarboxylic-acid cycle activity in relation to itaconic acid biosynthesis by Aspergillus terreus. J. Gen. Microbiol. 129, 2877–2883.

    CAS  Google Scholar 

  • Witteveen, C.F.B., van de Vondervoort, P., Swart, K., and Visser, J. (1990). Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl. Microbiol. Biotechnol. 33, 683–686.

    CAS  Google Scholar 

  • Witteveen, C.F.B., van de Vondervoort, P.J.I., van den Broeck, H.C., van Engelenburg, F.A.C., de Graaff, L.H., Hillebrand, M.H.B.C., Schaap, P.J., and Visser, J. (1993). Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Curr. Genet. 24, 408–416.

    PubMed  CAS  Google Scholar 

  • Witteveen, C.F.B., Veenhuis, M., and Visser, J. (1992). Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl. Environ. Microbiol. 58, 1190–1194.

    PubMed  CAS  Google Scholar 

  • Witteveen, C.F.B. and Visser, J. (1995). Polyol pools in Aspergillus niger. FEMS Microbiol. Lett. 134, 57–62.

    PubMed  CAS  Google Scholar 

  • Wolschek, M.F. and Kubicek, C.P. (1997). The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase encoding genes, tpsA and tpsB. J. Biol. Chem. 272, 2729–2735.

    PubMed  CAS  Google Scholar 

  • Woronick, C.L. and Johnson, M.J. (1960). Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J. Biol. Chem. 235, 9–15.

    PubMed  CAS  Google Scholar 

  • Wright B.E., Longacre A., and Reimers J. (1996). Models of metabolism in Rhizopus oryzae. J. Theor. Biol. 182, 453–457.

    PubMed  CAS  Google Scholar 

  • Xuemei, L., Jianping, L., Mo’e, L., and Peilin, C. (1999). L-Lactic acid production using immobilized Rhizopus oryzae in a three-phase fluidized-bed with simultaneous product separation by electrodialysis. Bioprocess Eng. 20, 231–237.

    CAS  Google Scholar 

  • Yang, C.W., Lu, Z.J., and Tsao, G.T. (1995). Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Appl. Biochem. Biotechnol. 51, 57–71.

    Google Scholar 

  • Yin, P.M., Nishina, N., Kosakai, Y., Yahiro, K., Park, Y., and Okabe, M. (1997). Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J. Ferment. Bioeng. 84, 249–253.

    CAS  Google Scholar 

  • Yin, P.M., Yahiro, K., Ishigaki, T., Park, Y., and Okabe, M. (1998). L(+)-Lactic acid production by repeated batch culture of Rhizopus oryzae in air-lift bioreactor. J. Ferment. Bioeng. 85, 96–100.

    CAS  Google Scholar 

  • Yu, R.C. and Hang, Y.D. (1991). Purification and characterization of NAD-dependent lactate dehydrogenase from Rhizopus oryzae. Food Chem. 41, 219–225.

    CAS  Google Scholar 

  • Zehentgruber, O., Kubicek, C.P., and Röhr, M. (1980). Alternative respiration of Aspergillus niger. FEMS Microbiol. Lett. 8, 71–74.

    CAS  Google Scholar 

  • Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552.

    CAS  Google Scholar 

  • Zhang, A. and Röhr, M. (2002a). Citric acid fermentation and heavy metal ions: II. The action of elevated manganese ion concentrations. Acta Biotechnol. 22, 375–382.

    CAS  Google Scholar 

  • Zhang, A. and Röhr, M. (2002b). Effects of varied phosphorus concentrations on citric acid fermentation by Aspergillus niger. Acta Biotechnol. 22, 383–390.

    CAS  Google Scholar 

  • Zhou, Y., Dominguez, J.M., Cao, N.J., Du, J.X., and Tsao, G.T. (1999). Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl. Biochem. Biotechnol. 77, 401–407.

    PubMed  Google Scholar 

  • Zhou, Y., Du, J.X., and Tsao, G.T. (2000). Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl. Biochem. Biotechnol. 84, 779–789.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Magnuson, J.K., Lasure, L.L. (2004). Organic Acid Production by Filamentous Fungi. In: Tkacz, J.S., Lange, L. (eds) Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8859-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8859-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4694-4

  • Online ISBN: 978-1-4419-8859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics