Skip to main content

Scale-Up of Antibody Purification

From laboratory scale to production

  • Chapter
Antibodies

Abstract

Recent developments of highly specific biotherapeutics are mainly based on immunoaffinity mechanisms. After ups and downs of monoclonal antibodies (mAb) these molecules are now gaining respect again. Among the “Top Twenty” biopharmaceuticals the number of antibodies and related products is increasing. In the pipeline of new biological entities most of the molecules either are murine monoclonal antibodies, chimeric monoclonal antibodies, humanized monoclonal antibodies, or human monoclonal antibodies. Examples of approved monoclonal antibodies which have already a multi-million dollar market volume are the chimeric monoclonal antibodies ReoPro and Remicade (Johnson & Johnson/Centocor), Simulect (Novartis), and IDEC’s Zevlin, the human or humanized antibodies Humira (Abbott), Herceptin (Genentech/Roche), Zenapax (Roche/PDL), Mylotarg (Celltech/Wyeth), Campath (Ilex/Schering), Xanelim (Genentech/Xoma) and Avastin (Genentech) or the murine derived antibodies Bexxar (Corixa/GSK), Rituxan (IDEC/Genentech) and Orthoclone (Johnson & Johnson).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amersham Biosciences, 2001, MabSelect®, data file 71-5020-91 AA, and Protein A Sepharose®Fast Flow, data file 18-1125-19

    Google Scholar 

  • Ameskamp, N., Priesner, C., Lehmann, J., and Lutkemeyer, D., 1999, Pilot scale recovery of monoclonal antibodies by expanded bed ion exchange adsorption. Bioseparation 8:169–188

    Article  PubMed  CAS  Google Scholar 

  • Andersson, M., Ramberg, M., and Johansson, B-L., 1998, The influence of the degree of cross-linking, type of ligand and support on the chemical stability of chromatography media intended for protein purification. Process Biochemistry 33:47.55

    Article  Google Scholar 

  • Bai, L., Burman, S., Gledhill, L, 2000, Development of ion exchange chromatography methods for monoclonal antibodies. J. Pharm. Biomed. Anal. 22:605–611

    Article  PubMed  CAS  Google Scholar 

  • Barnfield Frej, A.-K., Johansson, H.J., Johansson, S., Leijon, P., 1997, Expanded bed adsorption at production scale: scale-up verification, process example and sanitization of column and adsorbent. Bioprocess Eng. 16:57–63

    Article  Google Scholar 

  • Belew, M., Juntti, N., Larsson, A., and Porath, J., 1987, A one-step purification method for monoclonal antibodies based on salt-promoted adsorption chromatography on a “thiophilic” adsorbent. J. Immunol Methods 102:173–182

    Article  PubMed  CAS  Google Scholar 

  • Bill, E., Lutz, U., Karlsson, B.M., Sparrman, M., and Allgaier, H., 1995, Optimization of protein G chromatography for biopharmaceutical monoclonal antibodies. J. Mol. Recognit. 8:90–94

    Article  PubMed  CAS  Google Scholar 

  • Breece, T.N., Gilkerson, E., and Schmelzer, C., 2002, Validation of large-scale Chromatographic processes, part II; Results from the case study of neuleze capture on Macroprep High-S. BioPharm July 2002:35–42

    Google Scholar 

  • Brorson, K., Brown, J., Hamilton, E., and Stein, K., 2003, Identification of protein A media performance attributes that can be monitored as surrogates for retrovirus clearance during extended re-use. J. Chromatogr. A 989:155–163

    Article  PubMed  CAS  Google Scholar 

  • Casey, J.L., Keep, P.A., Chester, K.A., Robson, L., Hawkins, R.E., and Begent, R.H.J., 1995, Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Methods 179:105–116

    Article  PubMed  CAS  Google Scholar 

  • Cahill, M., Macniven, R., Hawkins, K., Gallo, C., Sernatinger, J., Myers, J., and Notarnicola, S., 2000, Viral Clearance by Protein A Affinity and Anion Exchange Chromatography. Downstream GAb abstracts “Reports from GAb 2000” Amersham Biosciences, Code number, 18-1150-47:24–26

    Google Scholar 

  • Center for Biologics Evaluation and Research, 1997, Points to consider in the manufacture and testing of monoclonal antibody products for human use; Food and Drug Administration, U. S. Department of Health and Human Services, Rockville, MD

    Google Scholar 

  • Denton, G., Murray, A., Price, M.R., and Levison, P.R., 2001, Direct isolation of monoclonal antibodies from tissue culture supernatant using the cation-exchange cellulose Express-Ion S. J. Chromatogr. A, 908:223–234

    Article  PubMed  CAS  Google Scholar 

  • Desai, M.A., 2000, Methods in Biotechnology Vol 9, Downstream Processing of Proteins, Methods and Protocols. Humana Press Inc., Totowa, New Jersey

    Google Scholar 

  • Dziennik, S.R., Belcher, E.B., Barker, G.A., DeBergalis, M.J., Fernandez, S.E., Lenhoff, A.M., 2003, Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles. Proc. Natl. Acad. Sci. USA, 21:420–425.

    Article  Google Scholar 

  • Fahrner, R.L. Iyer, H.V., Blank, G.S., 1999, The optimal flow rate and column length for maximum production rate of protein A affinity chromatography. Bioprocess Engineering 21:287–292

    Article  CAS  Google Scholar 

  • Fahrner, R., Blank, G.S., and Zapata, G., 1999, Expanded bed protein A affinity chromatography of a recombinant humanized monoclonal antibody: process development, operation, and comparison with a packed bed method. J. Biotechnol. 75:273–280

    Article  PubMed  CAS  Google Scholar 

  • Füglistaller, P., 1989, Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein A affinity Chromatographie matrices. J. Immunol. Meth. 124:171–177

    Article  Google Scholar 

  • Francis, R., 1999, Intensification of a large scale commercial monoclonal antibody purification process, paper presented at the “The Fourth Waterside Monoclonal Conference, 14-17 April, 1999, Norfolk, Virginia, USA”. Downstream 30:22–23

    Google Scholar 

  • Gottschalk, U., Rosenkranz, E., and Britsch, L., 1997, Preparative capturing of mouse monoclonal antibodies from cell culture supernatant by cation exchange chromatography. Bio World 3:42–44

    Google Scholar 

  • Hahn, R., Schlegel, R., and Jungbauer, A., 2003, Comparison of Protein A affinity sorbents. J. Chromatogr. B 790: 35–51

    Article  CAS  Google Scholar 

  • Hubbuch, J., Linden, T., Knieps, E., Thömmes, J., and Kula, M-R., 2002, Dynamics of protein uptake within the adsorbent particle during packed bed chromatography. Biotechnol. Bioeng. 80:359–368

    Article  PubMed  CAS  Google Scholar 

  • Huse, K., Bohme, HJ., and Scholz, G.H., 2002, Purification of antibodies by affinity chromatography. J. Biochem. Biophys. Methods 51:217–31

    Article  PubMed  CAS  Google Scholar 

  • Iyer, H., Henderson F., Cunningham E., Webb J., Hanson J., Bork C., and Conley L. 2002, Considerations during development of a protein A-based antibody purification process. Biopharm January 2002:14–20

    Google Scholar 

  • Kang, K.A. and Ryu, D.D., 1991, Studies on scale-up parameters of an immunoglobulin separation system using protein A affinity chromatography. Biotechnol. Prog. 7:205–212

    Article  PubMed  CAS  Google Scholar 

  • Kundu, A., Allen, K., Carrillo R, Snyder M., and Burton, G., 2001, Development of a regeneration protocol for anion-exchange resins presented at the Recovery of Biological Products X in Cancún (Mexico; 2001)

    Google Scholar 

  • Lagerlund, I., Larsson, E., Gustavsson, J., Färenmark, J., and Heijbel, A., 1998, Characterisation of ANX Sepharose® 4 Fast Flow media. J. Chromatogr. A 769:129–140

    Google Scholar 

  • Levison, P.R., Mumford, C., Streater, M., Brandt-Nielson, A., Pathirana, N.D., and Badger, S.E. 1997, Performance comparison od low-pressure ion-exchange chromatography media for protein separation. J. Chromatogr. A 760:151–158

    Article  CAS  Google Scholar 

  • Lutkemeyer, D., Ameskamp, N., Priesner, C., Bartsch, E.M., and Lehmann, J., 2001, Capture of proteins from mammalian cells in pilot scale using different STREAMLINE® adsorbents. Bioseparation 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • McCue, J.T., Kemp, G., Low, D. and Quinones-Garcia, I., 2003, Evaluation of protein A chromatography media. J. Chromatogr. A 989:136–153

    Google Scholar 

  • Moscariello, J., Purdom, G., Coffman, J., Root, T.W., and Lightfoot, E.N., 2001, Characterizing the performance of industrial-scale columns. J. Chromatogr. A 908:131–41

    Article  PubMed  CAS  Google Scholar 

  • Necina, R., Amatschek, K., and Jungbauer, A., 1998, Capture of Human Monoclonal Antibodies from Cell Culture Supernatant by Ion Exchange Media Exhibiting High Charge Density. Biotechnol. Bioeng. 60:689–698

    Article  PubMed  CAS  Google Scholar 

  • O’Leary, R.M., Feuerhelm, D., Peers, D., Xu, Y., and Blank, G., 2001, Determining the useful lifetime oc Chromatographic resins. BioPharm September 2001:10–18

    Google Scholar 

  • Rathore, A. and Velayudhan, A., 2003, Guidelines for optimization and scale up in preparative chromatography. BioPharm January 2003:34–42

    Google Scholar 

  • Schulze, R., Kontermann, R., Queitsch, I., Dübel, S., and Bautz, E., 1994, Thiophilic adsorption chromatography of recombinant single-chain antibody fragments. Analytical Biochemistry 220:212–214

    Article  PubMed  CAS  Google Scholar 

  • Schenerman, M.A., Hope, J.N., Kletke, C., Singh, J.K., Kimura, R., Tsao, E.I., and Folena-Wasserman, G., 1999, Comparability testing of a humanized monoclonal antibody (Synagis) to support cell line stability, process validation, and scale-up for manufacturing. Biologicals 27:203–15

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, W., Judd, D., Wysocki, M., Guerrier, L., Birck-Wilson, E., and Boschetti, E., 2001, Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. J. Chromatogr A. 908:251–63

    Article  CAS  Google Scholar 

  • Shukla, A., Hinckley, P., Gefroh, E., Priyanka, G., and Hubbard, B., 2002, Generic purification processes for monoclonal antibodies and Fc fusion proteins; presented at IBC’s Scaling-Up from Bench to Clinic & Beyond conference 14-16 August, 2002, San Diego, USA

    Google Scholar 

  • Sofer, G., 1996, Validation: Ensuring the accuracy of scaled-down chromatography models. BioPharm October 1996:51–54

    Google Scholar 

  • Stickel, J.J. and Fotopoulos, A., 2001, Pressure-flow relationship for packed beds of compressible chromatography media at laboratory and production scale, Biotechnol. Prog. 17:744–751

    Article  PubMed  CAS  Google Scholar 

  • Tauer, G, Buchacher, A., and Jungbauer, A., 1995, DNA clearance in chromatography of proteins, exemplified by affinity chromatography. J. Biochem. Biophys. Methods 30:75–78

    Article  PubMed  CAS  Google Scholar 

  • Tice, A., Mazsaroff, I., Lin, N.T., and Regnier, F.E., 1987, Effects of large sample loads on column lifetime in preparative-scale liquid chromatography. J. Chromatogr. 410:43–51

    Article  PubMed  CAS  Google Scholar 

  • van Sommeren, A.P., Machielsen, P.A., and Gribnau, T.C., 1992, Effects of temperature, flow rate and composition of binding buffer on adsorption of mouse monoclonal IgG1 antibodies to protein A Sepharose® 4 Fast Flow. Prep Biochem. 22:135–149

    Article  PubMed  Google Scholar 

  • Vorauer, K., Skias, M., Trkola, A., Schulz, P. and Jungbauer, A., 1992, Scale-up of recombinant protein purification by hydrophobic interaction chromatography. J. Chromatogr. 625:33–39

    Article  PubMed  CAS  Google Scholar 

  • Walter, J., 1999, Scale-up of downstream processing. In Protein Liquid Chromatography (Journal of Chromatography Library vol. 61) (M. Kastner, ed.), Elsevier, Amsterdam, pp. 765–783.

    Google Scholar 

  • Walter, J.K., Nothelfer, F., and Werz, W., 1998, Virus Removal and Inactivation. ACS Symp.Series 698, Validation of Biopharm. Manufac. Processes, Am.Chem.Soc, pp. 114–124.

    Google Scholar 

  • Williams, A., Taylor, K., Dambuleff, K., Persson, O., and Kennedy, R.M., 2002, Maintenance of column performance at scale. J. Chromatogr. A 944:69–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacob, L.R., Frech, M. (2004). Scale-Up of Antibody Purification. In: Subramanian, G. (eds) Antibodies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8875-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8875-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4701-9

  • Online ISBN: 978-1-4419-8875-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics