Skip to main content

Brain Tissue Mechanical Properties

  • Chapter
  • First Online:
Biomechanics of the Brain

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The human brain is soft highly metabolically active tissue, floating in cerebrospinal fluid (CSF) within the rigid cranium. This environment acts to isolate the brain from the majority of external mechanical loads experienced by the head during normal daily life. The brain does experience a range of mechanical loads directly, as a result of blood and CSF flow, and to some extent, body posture. The dynamic balance of pulsatile hydrodynamic forces in the skull is maintained by blood and CSF flow into and out of the skull throughout the cardiac cycle (the Monroe-Kelly hypothesis), since the internal volume of the skull is constant. Reflex responses maintain blood flow during changes in posture and activity, so as to stabilize the mechanical and biochemical environment of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geng, G., Johnston, L.A., Yan, E., et al.: Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13, 920–930 (2009)

    Article  Google Scholar 

  2. McHedlishvili, G., Itkis, M., Sikharulidze, N.: Mechanical properties of brain tissue related to oedema development in rabbits. Acta Neurochir. 96, 137–140 (1989)

    Article  Google Scholar 

  3. Pang, D., Altschuler, E.: Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 35, 643–655 (1994). discussion 655–656

    Article  Google Scholar 

  4. Kuroiwa, T., Yamada, I., Katsumata, N., et al.: Ex vivo measurement of brain tissue viscoelasticity in postischemic brain edema. Acta Neurochir. Suppl. 96, 254–257 (2006)

    Article  Google Scholar 

  5. Xu, L., Lin, Y., Han, J.C., et al.: Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol. 48, 327–330 (2007)

    Article  Google Scholar 

  6. Mase, M., Miyati, T., Kasai, H., et al.: Noninvasive estimation of intracranial compliance in idiopathic NPH using MRI. Acta Neurochir. Suppl. 102, 115–118 (2008)

    Article  Google Scholar 

  7. Tarnaris, A., Kitchen, N.D., Watkins, L.D.: Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J. Neurosurg. 110, 837–851 (2009)

    Article  Google Scholar 

  8. Holbourn, A.: The mechanics of brain injury. Br. Med. Bull. 3, 147–149 (1945)

    Google Scholar 

  9. Gennarelli, T.A., Thibault, L.E., Adams, J.H., et al.: Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12, 564–574 (1982)

    Article  Google Scholar 

  10. Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., et al.: The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43, 623–636 (2006)

    Google Scholar 

  11. Green, M.A., Bilston, L.E., Sinkus, R.: In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21, 755–764 (2008)

    Article  Google Scholar 

  12. Bilston, L.E., Liu, Z., Phan-Thien, N.: Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34, 377–385 (1997)

    Article  Google Scholar 

  13. Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., et al.: The large shear strain dynamic behaviour of in vitro porcine brain tissue and a silicone gel model material. Proceedings of Stapp Car Crash Conference: SAE, pp. 249–260 (2000)

    Google Scholar 

  14. Nicolle, S., Lounis, M., Willinger, R., et al.: Shear linear behavior of brain tissue over a large frequency range. Biorheology 42, 209–223 (2005)

    Google Scholar 

  15. Shen, F., Tay, T.E., Li, J.Z., et al.: Modified Bilston nonlinear viscoelastic model for finite ­element head injury studies. J. Biomech. Eng. 128, 797–801 (2006)

    Article  Google Scholar 

  16. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  17. Muthupillai, R., Lomas, D.J., Rossman, P.J., et al.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)

    Article  ADS  Google Scholar 

  18. Vappou, J., Breton, E., Choquet, P., et al.: Magnetic resonance elastography compared with rotational rheometry for in vitro brain tissue viscoelasticity measurement. Magn. Reson. Mater. Phys., Biol. Med. 20, 273–278 (2007)

    Google Scholar 

  19. Lippert, S.A., Rang, E.M., Grimm, M.J.: The high frequency properties of brain tissue. Biorheology 41, 681–691 (2004)

    Google Scholar 

  20. Atay, S.M., Kroenke, C.D., Sabet, A., et al.: Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography. J. Biomech. Eng. 130, 021013 (2008)

    Article  Google Scholar 

  21. Arbogast, K.B., Meaney, D.F., Thibault, L.E.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of Proceedings of the 39th Stapp Car Crash Conference; Coronado, CA: SAE, pp. 153–159 (1995)

    Google Scholar 

  22. Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23, 633–645 (2001)

    Article  Google Scholar 

  23. Fallenstein, G.T., Hulce, V.D., Melvin, J.W.: Dynamic mechanical properties of human brain tissue. J. Biomech. 2, 217–226 (1969)

    Article  Google Scholar 

  24. Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38, 335–345 (2001)

    Google Scholar 

  25. Takhounts, E., Crandall, J.R., Darvish, K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47, 79–92 (2003)

    Google Scholar 

  26. Ferry, J.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  27. Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. 119, 423–432 (1997)

    Article  Google Scholar 

  28. Estes, M.S., McElhaney, J.H.: Response of brain tissue to compressive loading. ASME Paper 70-BHF-13 (1970)

    Google Scholar 

  29. Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30, 1115–1121 (1997)

    Article  Google Scholar 

  30. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007)

    Article  Google Scholar 

  31. Tamura, A., Hayashi, S., Watanabe, I., et al.: Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2, 115–126 (2007)

    Article  Google Scholar 

  32. Pervin, F., Chen, W.W.: Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J. Biomech. 42, 731–735 (2009)

    Article  Google Scholar 

  33. Miller, K., Chinzei, K., Orssengo, G., et al.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)

    Article  Google Scholar 

  34. Chinzei, K., Miller, K.: Compression of swine brain tissue: experiment in vitro. J. Mech. Eng. Lab. 50, 106–115 (1996)

    Google Scholar 

  35. Miller, K.: Modelling soft tissue using biphasic theory – a word of caution. Comput. Meth. Biomech. Biomed. Eng. 1, 261–263 (1998)

    Article  Google Scholar 

  36. Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37, 1263–1269 (2004)

    Article  Google Scholar 

  37. Franceschini, G., Bigoni, D., Regitnig, P., et al.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54, 2592–2620 (2006)

    Article  ADS  MATH  Google Scholar 

  38. Kaczmarek, M., Subramaniam, R., Neff, S.: The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull. Math. Biol. 59, 295–323 (1997)

    Article  MATH  Google Scholar 

  39. Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. J. Biomech. 35, 483–490 (2002)

    Article  Google Scholar 

  40. Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5, 53–61 (2006)

    Article  Google Scholar 

  41. Schiavone, P., Chassat, F., Boudou, T., et al.: In vivo measurement of human brain elasticity using a light aspiration device. Med. Image Anal. 13, 673–678 (2009)

    Article  Google Scholar 

  42. Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8, 77–84 (2009)

    Article  Google Scholar 

  43. Dutta-Roy, T., Wittek, A., Miller, K.: Biomechanical modelling of normal pressure hydrocephalus. J. Biomech. 41, 2263–2271 (2008)

    Article  Google Scholar 

  44. Cheng, S., Bilston, L.E.: Computational model of the cerebral ventricles in hydrocephalus. J. Biomech. Eng. 132, 054501–054504 (2010)

    Article  Google Scholar 

  45. Ruan, J.S., Khalil, T., King, A.I.: Dynamic response of the human head to impact by three-dimensional finite element analysis. J. Biomech. Eng. 116, 44–50 (1994)

    Article  Google Scholar 

  46. Zhang, L., Yang, K.H., King, A.I.: Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18, 21–30 (2001)

    Article  MATH  Google Scholar 

  47. Ho, J., Kleiven, S.: Can sulci protect the brain from traumatic injury? J. Biomech. 42, 2074–2080 (2009)

    Article  Google Scholar 

  48. Kleiven, S.: Influence of impact direction on the human head in prediction of subdural hematoma. J. Neurotrauma 20, 365–379 (2003)

    Article  Google Scholar 

  49. Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)

    Article  Google Scholar 

  50. Coats, B., Margulies, S.S.: Material properties of porcine parietal cortex. J. Biomech. 39, 2521–2525 (2006)

    Article  Google Scholar 

  51. Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M.: Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37, 127–134 (2004)

    Article  Google Scholar 

  52. Gefen, A., Gefen, N., Zhu, Q., et al.: Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20, 1163–1177 (2003)

    Article  Google Scholar 

  53. Sack, I., Beierbach, B., Wuerfel, J., et al.: The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009)

    Article  Google Scholar 

  54. Thibault, K.L., Margulies, S.S.: Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31, 1119–1126 (1998)

    Article  Google Scholar 

  55. Weaver, J.B., Perrinez, P.R., Bergeron, J.A., et al.: The effects of interstitial tissue pressure on the measured shear modulus in vivo. In: Manduca, A., Hu, X.P. (eds.) Medical Imaging: Physiology, Function, and Structure from Medical Images, Proceedings of SPIE, pp. 1A-1-11 (2007)

    Google Scholar 

  56. Metz, H., McElhaney, J., Ommaya, A.K.: A comparison of the elasticity of live, dead, and fixed brain tissue. J. Biomech. 3, 453–458 (1970)

    Article  Google Scholar 

  57. Garo, A., Hrapko, M., van Dommelen, J.A.W., et al.: Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44, 51–59 (2007)

    Google Scholar 

  58. Gefen, A., Margulies, S.S.: Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004)

    Article  Google Scholar 

  59. Liu, Z.: Rheological Properties of Biological Soft Tissues. PhD Thesis. University of Sydney, Sydney (2001)

    Google Scholar 

  60. Cheng, S., Clarke, E.C., Bilston, L.E.: The effects of preconditioning strain on measured tissue properties. J. Biomech. 42, 1360–1362 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Lynne Bilston is supported by an NHMRC Senior Research Fellowship. She would like to thank Dr Shaokoon Cheng for useful discussions and also for assistance with preparing figures for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Bilston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bilston, L.E. (2011). Brain Tissue Mechanical Properties. In: Miller, K. (eds) Biomechanics of the Brain. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9997-9_4

Download citation

Publish with us

Policies and ethics