Skip to main content

99mTc Diphosphonate Uptake Mechanism on Bone

  • Chapter
Bone Scanning in Clinical Practice

Abstract

Bone scanning or scintigraphy is directed towards identifying sites of altered skeletal metabolism and abnormal foci of calcium phosphate deposition, such as heterotopic ossification and soft tissue calcification. The requirements of an ideal bonescanning agent are excellent imaging properties of the nuclide, high concentration of the nuclide at the abnormal site, little or no extraosseous or noncalcification site uptake, minimum tissue radiation, simple and safe preparation of the agent and ready availability of the nuclide. No scanning agent has all these ideal characteristics but the 99mTc diphosphonates come closest to satisfying the above criteria. 99mTc is easily obtained from a molybdenum-99/technetium-99m generator. The scheme, abundances, half-lives and energies are shown in Fig. 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benedict JJ, Van Duzee BF (1982) A structure/biodistribution study of 99mTc-diphosphonate skeletal imaging agents. Presented at the international symposium on technetium in chemistry and nuclear medicine, Padua, Italy, 9 Sept 1982

    Google Scholar 

  • Bevan JA, Tofe AJ, Francis MD, Barnett BL, Benedict JJ (1979) Tc-99m hydroxymethylene diphosphonate (HMDP): a new skeletal imaging agent. In: Sorenson JA (ed) Radiopharmaceuticals H, proceedings of the 2nd international symposium on radiopharmaceuticals. New York, Society of Nuclear Medicine, pp 646–654

    Google Scholar 

  • Buja LM, Tofe AJ, Kulkarni PV et al. (1977) Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 60: 724–740

    Article  PubMed  CAS  Google Scholar 

  • Charkes ND, Makler PT Jr, Phillips C (1978) Studies of skeletal tracer kinetics. 1. Digital computer solution of a fivecompartment model of (18F) fluoride kinetics in humans. J Nucl Med 19:1301–1309

    PubMed  CAS  Google Scholar 

  • Deutsch E, Barnett BL (1980) Synthetic and structural aspects of technetium chemistry as related to nuclear medicine. In: Martell AE (ed) Inorganic chemistry in biology and medicine. ACS symp series No 140, pp 103–119

    Chapter  Google Scholar 

  • Deutsch E, Libson K, Becker CB et al. (1980) Preparation and biological distribution of technetium diphosphate radiotracers synthesized without stannous tin. J Nucl Med 21: 859–866

    PubMed  CAS  Google Scholar 

  • Fogelman I (1982) Diphosphonate bone scanning agentscurrent concepts. Eur J Nucl Med 7: 506–509

    PubMed  CAS  Google Scholar 

  • Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD (1981). A comparison of skeletal uptakes of three diphosphonates by whole-body retention: concise communication. J Nucl Med 22: 880–883

    PubMed  CAS  Google Scholar 

  • Francis MD, Slough CL, Tofe AJ, Silbertstein EB (1976) Factors affecting uptake and retention of technetium-99m-diphosphonate and 99m-pertechnetate in osseous, connective and soft tissues. Calcif Tissue Res 20:303–311

    Article  PubMed  CAS  Google Scholar 

  • Francis MD, Tofe AJ, Benedict JJ, Bevan JA (1979) Imaging the skeletal system. In: Sorenson JA (ed) Radiopharmaceuticals n, proceedings of the 2nd international symposium on radiopharmaceuticals. New York, Society of Nuclear Medicine, pp 603–614

    Google Scholar 

  • Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE (1980) Comparative evaluation of three diphosphonates: in vivo adsorption (C-14 labelled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 21:1185–1189

    PubMed  CAS  Google Scholar 

  • Francis MD, Horn PA, Tofe AJ (1981) Controversial mechanism of technetium-99m deposition on bone. J Nucl Med 22: 72 (abstract)

    Google Scholar 

  • Fritzberg AR, Lyster DM, Dolphin DH (1977) Evaluation of form-amidine sulfinic acid and other reducing agents for use in the preparation of Tc-99m labelled radiopharmaceuticals. J Nucl Med 18:553–557

    PubMed  CAS  Google Scholar 

  • Grassi J, Devynck J, Tremillon B (1979) Electrochemical studies of technetium at a mercury electrode. Anal Chem 107:47–58

    CAS  Google Scholar 

  • Guillemart A, Le Pape A, Galy G, Besnard JC (1980) Bone kinetics of calcium-45 and pyrophosphate labelled with technetium-96. An autoradiographic evaluation. J Nucl Med 21:466–470

    PubMed  CAS  Google Scholar 

  • Landis WJ (1985) Characterization of the mineral phases initially deposited in calcifying vertebrate tissues. In: Klee WE (ed) Proceedings of the conference on crystal deposition and dissolution in tissues, Evian, France, 26–28 Sept, pp La 1–18

    Google Scholar 

  • Lavender JP, Khan RAA, Hughes SPF (1979) Blood flow and tracer uptake in normal and abnormal canine bone: comparisons with Sr-85 microspheres, Kr-81m, and Tc-99m MDP. J Nucl Med 20:413–418

    PubMed  CAS  Google Scholar 

  • Littlefield JL, Rudd TG (1983) Tc-99m hydroxymethylene diphosphonate and Tc-99m methylene diphosphonate: biological and clinical comparison: concise communication. J Nucl Med 24:463–466

    PubMed  CAS  Google Scholar 

  • Pauwels EKJ, Blom J, Camps JAJ, Hermans J, Rijke AM (1983) A comparison between the diagnostic efficacy of 99mTc-MDP, 99mTc-DPD and 99mTc-HDP for the detection of bone metastases. Eur J Nucl Med 8:118–122

    Article  PubMed  CAS  Google Scholar 

  • Rosenthall L, Kaye M (1975) Technetium-99m-pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 16:33–39

    PubMed  CAS  Google Scholar 

  • Russell CD (1977) Carrier electrochemistry of pertechnetate: application to radiopharmaceutical labelling by controlled potential electrolysis at chemically inert electrodes. Int J Appl Radiat Isot 28: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Russell CD, Majerik JE, Cash AG, Lindsay RH (1978) Technetium pyrophosphate, a mixture?—Preparation and comparative biologic properties of Tc(lH) and Tc(IV) pyrophosphate. Int J Nucl Med Biol 5:190–194

    Article  PubMed  CAS  Google Scholar 

  • Sagar V, Piccone JM, Charkes ND, Makler PT Jr (1978) Skeletal tracer uptake and bone flow in dogs. J Nucl Med 19: 705–706

    Google Scholar 

  • Schwarz A, Kloss G (1981) Beziehungen zwischen chemischer Structure und Skelettfixierung verschiedener Tc-99m-Phosphonsäuren. Nuklearmedizin Suppl 18:120–124

    CAS  Google Scholar 

  • Silberstein EB, Francis MD, Tofe AJ, Slough CL (1975) Distribution of 99mTc-Sn-diphosphonate and free 99mTc pertechnetate in selected soft and hard tissues. J Nucl Med 16: 58–61

    PubMed  CAS  Google Scholar 

  • Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Steigman J, Meinken G, Richards P (1978) The reduction of pertechnetate-99m by stannous chloride—II. The stoichio-metry of the reaction in aqueous solutions of several phos-pherous (V) compounds. Int J Appl Radiat Isot 29: 653–660

    Article  CAS  Google Scholar 

  • Tilden RL, Jackson J, Enneking WF (1973) 99mTc-polyphosphate: histological localization in human femurs by autoradiography. J Nucl Med 14: 576–578

    PubMed  CAS  Google Scholar 

  • Wilson GM, Pinkerton TC (1985) Determination of charge and size of technetium diphosphonate complexes by anion-exchange liquid chromatography. Anal Chem 57: 246–253

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francis, M.D., Fogelman, I. (1987). 99mTc Diphosphonate Uptake Mechanism on Bone. In: Fogelman, I. (eds) Bone Scanning in Clinical Practice. Springer, London. https://doi.org/10.1007/978-1-4471-1407-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1407-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1409-3

  • Online ISBN: 978-1-4471-1407-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics