Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Random Variables and Distribution Functions

verfasst von : Alexandr A. Borovkov

Erschienen in: Probability Theory

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Section 3.1 introduces the formal definitions of random variable and its distribution, illustrated by several examples. The main properties of distribution functions, including a characterisation theorem for them, are presented in Sect. 3.2. This is followed by listing and briefly discussing the key univariate distributions. The second half of the section is devoted to considering the three types of distributions on the real line and the distributions of functions of random variables. In Sect. 3.3 multivariate random variables (random vectors) and their distributions are introduced and discussed in detail, including the two key special cases: the multinomial and the normal (Gaussian) distributions. After that, the concepts of independence of random variables and that of classes of events are considered in Sect. 3.4, establishing criteria for independence of random variables of different types. The theorem on independence of sigma-algebras generated by independent algebras of events is proved with the help of the probability approximation theorem. Then the relationships between the introduced notions are extensively discussed. In Sect. 3.5, the problem of existence of infinite sequences of random variables is solved with the help of Kolmogorov’s theorem on families of consistent distributions, which is proved in Appendix 2. Section 3.6 is devoted to discussing the concept of integral in the context of Probability Theory (a formal introduction to Integration Theory is presented in Appendix 3). The integrals of functions of random vectors are discussed, including the derivation of the convolution formulae for sums of independent random variables.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the English language literature, the distribution function is conventionally defined as F ξ (x)=P(ξx). The only difference is that, with the latter definition, F will be right-continuous, cf. property F3 below.
 
2
The definition refers to absolute continuity with respect to the Lebesgue measure. Given a measure μ on \(\langle\mathbb{R},\mathfrak{B}\rangle\) (see Appendix 3), a distribution F is called absolutely continuous with respect to μ if, for any \(B\in\mathfrak{B}\), one has
$$\mathbf{F}(B)=\int_B f(x)\mu(dx). $$
In this sense discrete distributions are also absolutely continuous, but with respect to the counting measure m. Indeed, if one puts f(x k )=p k , m(B)={the number of points from the set(x 1,x 2,…) which are in B}, then
$$\mathbf{F}(B)=\sum_{x_k\in B}p_k=\sum _{x_k\in B}f(x_k)= \int_B f(x)m(dx) $$
(see Appendix 3).
 
3
The assertion about the “almost everywhere” uniqueness of the function f follows from the Radon–Nikodym theorem (see Appendix 3).
 
4
See Sect. 3.5 in Appendix 3.
 
5
For an arbitrary non-decreasing function g, the inverse function g (−1)(x) is defined by the equation
$$g^{(-1)}(y):=\inf\bigl\{x:g(x)\ge y\bigr\}=\sup\bigl\{x:g(x)<y\bigr\}. $$
 
6
For a more detailed discussion of connections between causal and probabilistic independence, see [24], from where we borrowed the above examples.
 
7
The theorem is also a direct consequence of the lemma from Appendix 1.
 
Literatur
24.
Zurück zum Zitat Kolmogorov, A.N.: The theory of probability. In: Aleksandrov, A.D., et al. (eds.) Mathematics, Its Content, Methods, and Meaning, vol. 2, pp. 229–264. MIT Press, Cambridge (1963) Kolmogorov, A.N.: The theory of probability. In: Aleksandrov, A.D., et al. (eds.) Mathematics, Its Content, Methods, and Meaning, vol. 2, pp. 229–264. MIT Press, Cambridge (1963)
Metadaten
Titel
Random Variables and Distribution Functions
verfasst von
Alexandr A. Borovkov
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5201-9_3