Skip to main content

Modelling by Lévy Processess for Financial Econometrics

  • Chapter
Lévy Processes

Abstract

This paper reviews some recent work in which Lévy processes are used to model and analyse time series from financial econometrics. A main feature of the paper is the use of posi- tive Ornstein-Uhlenbeck-type (OU-type) processes inside stochastic volatility processes. The basic probability theory associated with such models is discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Asmussen (1998), Stochastic simulation with a view towards stochastic processes, Lecture Notes 2, MaPhySto, Aarhus University.

    Google Scholar 

  2. S. Asmussen and J. Rosiński (2000), Approximation of small jumps of Lévy processes with a view towards simulation, Research Report 2000–2, MaPhySto, Aarhus University.

    Google Scholar 

  3. S. Bar-Lev, D. Bshouty, and G. Letac (1992), Natural exponential families and self-decomposability, Statistics and Probability Letters, 13, 147–152.

    Article  MathSciNet  MATH  Google Scholar 

  4. O. E. Barndorff-Nielsen (1986), Sand, wind and statistics, Acta Mechanica, 64, 1–18.

    Article  Google Scholar 

  5. O. E. Barndorff-Nielsen (1998a), Probability and statistics: Selfdecomposability, finance and turbulence, in L. Acccardi and C. C. Heyde, eds., Probability Towards 2000: Proceedings of a Symposium held 2–5 October 1995 at Columbia University, Springer-Verlag, New York, 47–57.

    Google Scholar 

  6. O. E. Barndorff-Nielsen (1998b). Processes of normal inverse Gaussian type. Finance and Stochastics, 2, 41–68.

    Article  MathSciNet  MATH  Google Scholar 

  7. O. E. Barndorff-Nielsen (1999), Superposition of Ornstein-Uhlenbeck type processes, Theory of Probability and Its Applications, to appear.

    Google Scholar 

  8. O. E. Barndorff-Nielsen (2000), Lévy processes and Lévy random fields: From a stochastic modelling perspective, in preparation.

    Google Scholar 

  9. O. E. Barndorff-Nielsen, J. L. Jensen, and M. Sørensen (1998), Some stationary processes in discrete and continuous time. Advances in Applied Probability, 30, 989–1007.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. E. Barndorff-Nielsen and M. Leonenko (2000), Non-Gaussian scenarios in Burgers turbulence, in preparation.

    Google Scholar 

  11. O. E. Barndorff-Nielsen and V. Pérez-Abreu (1999), Stationary and selfsimilar processes driven by Lévy processes, Stochastic Processes and Their Applications, 84, 357–369.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. E. Barndorff-Nielsen and K. Prause (2001), Apparent scaling, Finance and Stochastics, 5,103–113.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. E. Barndorff-Nielsen and N. Shephard (2001), Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, Journal of the Royal Statistical Society, B63, to appear.

    Google Scholar 

  14. J. Bertoin (1996), Lévy Processes, Cambridge University Press, Cambridge.

    Google Scholar 

  15. J. Bertoin (2000), Some properties of Burgers turbulence with white or stable noise initial data, in O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds., Lévy Processes: Theory and Applications, Birkhäuser, Boston, 2001 (this volume), 267–279.

    Google Scholar 

  16. F. Black (1976), Studies of stock price volatility changes, Proceedings of the Business and Economic Statistics Section, American Statistical Association, 177–181.

    Google Scholar 

  17. T. Bollerslev, R. F. Engle, and D. B. Nelson (1994), ARCH models, in R. F. Engle and D. McFadden, eds., The Handbook of Econometrics, Vol. 4, North-Holland, Amsterdam, 2959–3038.

    Google Scholar 

  18. L. Bondesson (1982), On simulation from infinitely divisible distributions, Advances in Applied Probability, 14, 855–869.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Brix (1998), Spatial and spatio-temporal models for weed abundance, Ph.D. thesis, Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Copenhagen.

    Google Scholar 

  20. J. Y. Campbell, A. W. Lo, and A. C. MacKinlay (1997), The Econometrics of Financial Markets, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  21. T. Chan (1999), Pricing contingent claims on stocks driven by Lévy processes, Annals of Statistics, 27, 504–528.

    Google Scholar 

  22. R. Cont, M. Potters, and J. P. Bouchaud (1997), Scaling in stock market data: Stable laws and beyond. in B. Dubrulle, F. Graner, and D. Sornette, eds., Scale Invariance and Beyond: Proceedings of the CNRS Workshop on Scale Invariance, Les Houches, 75–85.

    Google Scholar 

  23. E. Csáki, M. Csörgö, Z. Y. Lin, and P. Révész (1991), On infinite series of independent Ornstein-Uhlenbeck processes, Stochastic Processes and Their Applications, 39, 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. X. Diebold and M. Nerlove (1989), The dynamics of exchange rate volatility: A multivariate latent factor ARCH model, Journal of Applied Econometrics, 4, 1–21.

    Article  Google Scholar 

  25. E. Eberlein (2000), Application of generalized hyperbolic Lévy motion to finance, in O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds., Lévy Processes: Theory and Applications, Birkhäuser, Boston, 2001 (this volume), 319–336.

    Google Scholar 

  26. E. Eberlein and U. Keller (1995), Hyperbolic distributions in finance, Bernoulli, 1, 281–299.

    Article  MATH  Google Scholar 

  27. R. F. Engle and J. R. Russell (1998), Forecasting transaction rates: The autoregressive conditional duration model. Econometrica, 66, 1127–1162.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. S. Ferguson and M. J. Klass (1972), A representation of independent increment processes without Gaussian components, Annals of Mathematical Statistics, 43, 1634–1643.

    Article  MathSciNet  MATH  Google Scholar 

  29. U. Frisch (1995), Turbulence, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  30. E. Ghysels, A. C. Harvey, and E. Renault (1996), Stochastic volatility, in C. R. Rao and G. S. Maddala, eds., Statistical Methods in Finance, North-Holland, Amsterdam, 119–191.

    Chapter  Google Scholar 

  31. C. Halgreen (1979), Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 47, 13–17.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Hodges and A. Carverhill (1993), Quasi mean reversion in an efficient stock market: The characterization of economic equilibria which support the Black-Scholes option pricing, Economic Journal, 103, 395–405.

    Article  Google Scholar 

  33. S. Hodges and M. J. P. Selby (1997), The risk premium in trading equilibria which support the Black-Scholes option pricing, in M. Dempster and S. Pliska, eds., Mathematics of Derivative Securities, Cambridge University Press, Cambridge, 41–53.

    Google Scholar 

  34. F. Hubalek and L. Krawczyk (1999), Simple explicit formulae for variance-optimal hedging for processes with stationary independent increments, unpublished paper.

    Google Scholar 

  35. J. Jacod and A. N. Shiryaev (1987), Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  36. Z. J. Jurek and J. D. Mason (1993), Operator-Limit Distributions in Probability Theory, Wiley, New York.

    MATH  Google Scholar 

  37. Z. J. Jurek and W. Vervaat (1983), An integral representation for selfdecomposable Banach space valued random variables, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 62, 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. King, E. Sentana, and S. Wadhwani (1994), Volatility and links between national stock markets, Econometrica, 62, 901–933.

    Article  MATH  Google Scholar 

  39. I. Koponen (1995), Analytic approach to the problem of convergence of truncated Lévy flights towards the gaussian stochastic process, Physics Review E, 52, 1197–1199.

    Article  Google Scholar 

  40. S. Levendorskii(2000), Generalized truncated Lévy processes and generalizations of the Black-Scholes formula and equation, with some applications to option pricing, personal communication to O. E. Barndorff-Nielsen.

    Google Scholar 

  41. P. Lévy (1937), Theories de L’Addition Aléatories, Gauthier-Villars, Paris.

    Google Scholar 

  42. Z. Y. Lin (1995), On large increments of infinite series of Ornstein-Uhlenbeck processes, Stochastic Processes and Their Applications, 60, 161–169.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Loéve (1955), Probability Theory, Van Nostrand, Princeton, NJ.

    MATH  Google Scholar 

  44. R. Mantegna and H. E. Stanley (2000), Introduction to Econophysics: Correlation and Complexity in Finance, Cambridge: Cambridge University Press.

    Google Scholar 

  45. M. B. Marcus (1987), ???-Radial Processes and Random Fourier Series, Memoirs of the American Mathematical Society 368, AMS, Providence, RI.

    Google Scholar 

  46. D. B. Nelson (1991), Conditional heteroskedasticity in asset pricing: A new approach, Econometrica, 59, 347–370.

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Nicolato (1999), A class of stochastic volatility models for the term structure of interest rates, Ph.D. thesis, Department of Mathematics Sciences, Aarhus University.

    Google Scholar 

  48. E. Nicolato and E. Venardos (2001), Option pricing in stochastic volatility models of the Ornstein-Uhlenbeck type with a leverage effect, in preparation.

    Google Scholar 

  49. E. A. Novikov (1994), Infinitely divisible distributions in turbulence, Physics Reviews E, 50, R3303–R3305.

    Article  Google Scholar 

  50. J. Pitman and M. Yor (1981), Bessel processes and infinite divisible laws, in D. Williams, ed., Stochastic Integrals, Lecture Notes in Mathematics 851, Springer-Verlag, Berlin, 285–370.

    Chapter  Google Scholar 

  51. M. K. Pitt and N. Shephard (1999), Time varying covariances: A factor stochastic volatility approach (with discussion), in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Bayesian Statistics 6, Oxford University Press, Oxford, 547–570.

    Google Scholar 

  52. P. Protter (1992), Stochastic Integration and Differential Equations, Springer-Verlag, New York.

    Google Scholar 

  53. J. Rosiński (1991), On a class of infinitely divisible processes represented as mixtures of Gaussian processes, in S. Cambanis, G. Samorodnitsky, and M. S. Taqqu, eds., Stable Processes and Related Topics, Birkhäuser, Basel, 27–41.

    Chapter  Google Scholar 

  54. J. Rosiński (2000), Series representations of Lévy processes from the perspective of point processes, in O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds., Lévy Processes: Theory and Applications, Birkhäuser, Boston, 2001 (this volume), 401–415.

    Google Scholar 

  55. T. H. Rydberg (1999), Generalized hyperbolic diffusions with applications towards finance, Mathematical Finance, 9, 183–201.

    Article  MathSciNet  MATH  Google Scholar 

  56. T. H. Rydberg and N. Shephard (2000), A modelling framework for the prices and times of trades made on the NYSE, in W. J. Fitzgerald, R. L. Smith, A. T. Walden, and P. C. Young, eds., Nonlinear and Nonstationary Signal Processing, Isaac Newton Institute and Cambridge University Press, Cambridge, to appear.

    Google Scholar 

  57. G. Samorodnitsky and M. S. Taqqu (1994), Stable Non-Gaussian Random Processes, Chapman and Hall, New York.

    MATH  Google Scholar 

  58. K. Sato (1980), Class L of multivariate distribution functions and its subclasses, Journal of Multivariate Analysis, 10, 207–232.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Sato (1982), Absolute continuity of multivariate distributions of class L, Journal of Multivariate Analysis, 12, 89–94.

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Sato (1999), Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  61. K. Sato and M. Yamazato (1983), Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type, Stochastic Processes and Their Applications, 17, 73–100.

    Article  MathSciNet  Google Scholar 

  62. K. Sato and M. Yamazato (1984), Stationary processes of Ornstein-Uhlenbeck type, in K. Itô and J. V. Prokhorov, eds., Probability Theory and Mathematical Statistics: Fourth USSR-Japan Symposium Proceedings, 1982, Lecture Notes in Mathematics 1021, Springer-Verlag, Berlin, 541–551.

    Google Scholar 

  63. N. Shephard (1996), Statistical aspects of ARCH and stochastic volatility. in D. R. Cox, D. V. Hinkley, and O. E. Barndorff-Nielson, eds., Time Series Models in Econometrics, Finance and Other Fields, Chapman and Hall, London, 1–67.

    Google Scholar 

  64. A. V. Skorohod (1991), Random Processes with Independent Increments Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  65. F. W. Steutel (1970), Preservation of Infinite Divisibility under Mixing and Related Topics, Mathematics Centre Tracts 33, Mathematical Centrum, Amsterdam.

    MATH  Google Scholar 

  66. S. J. Taylor (1994), Modelling stochastic volatility, Mathematical Finance, 4, 183–204.

    Article  MATH  Google Scholar 

  67. K. Urbanik (1969), Self-decomposable probability distributions on Rm, Zastosowania Matematyki, 10, 91–97.

    MathSciNet  MATH  Google Scholar 

  68. W. Vervaat (1979), On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Advances in Applied Probability, 11, 750–783.

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Walker, and P. Damien (2000), Representations of Lévy processes without Gaussian components, Biometrika, 87, 477–483.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. B. Walsh (1981), A stochastic model of neural response, Advances in Applied Probability, 13,231–281.

    Article  MathSciNet  MATH  Google Scholar 

  71. S. J. Wolfe (1982), On a continuous analogue of the stochastic difference equation xn = pxn-\ + bn, Stochastic Processes and Their Applications, 12, 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  72. R. L. Wolpert and K. Ickstadt (1998), Poisson/gamma random field models for spatial statistics, Biometrika, 85, 251–267.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barndorff-Nielsen, O.E., Shephard, N. (2001). Modelling by Lévy Processess for Financial Econometrics. In: Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T. (eds) Lévy Processes. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0197-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0197-7_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6657-0

  • Online ISBN: 978-1-4612-0197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics