Skip to main content

Impact of Submerged Macrophytes on Phytoplankton in Shallow Freshwater Lakes

  • Chapter
The Structuring Role of Submerged Macrophytes in Lakes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 131))

Abstract

The ubiquity of phytoplankton, and its fundamental importance as a primary producer and mediator of many major biological processes in lakes, has led to comprehensive research on its biology. Its importance for water quality and its increasing predominance as the main primary producer at the expense of submerged macrophytes in shallow lakes follow from increased nutrient loading. Often, macrophytes have completely disappeared, and nutrients are so abundant that it is difficult to conceive much bottom-up control of phytoplankton through especially phosphorus. Restriction of the nutrient loading to reduce the amount of phytoplankton and to increase water clarity and restore a more diverse biological structure has now started to reverse this process in many areas. Simultaneously, we can anticipate a renewed importance of submerged macrophytes in many lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, F.Ø.; Olsen, K.J. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark. Hydrobiologia 275/276: 267–276; 1994.

    Article  CAS  Google Scholar 

  • Baks, M.; Moss, B.; Phillips, G.; Irvine, K.; Stansfield, J. The changing ecosystem of a shallow, brackish lakes, Hickling Broad Norfolk. II. Long-term changes in water chemistry and ecology and their implications for restoration of the lake. Freshwat. Biol. 29:141–165; 1993.

    Article  Google Scholar 

  • Balls, H.; Moss, B., Irvine, K. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broad. Freshwat. Biol. 22: 71–87; 1989.

    Article  Google Scholar 

  • Beklioglu, M.; Moss, B. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and Zooplankton communities. Freshwat. Biol. 36: 315–325; 1996.

    Article  Google Scholar 

  • Brammer, E.S. Exclusion of phytoplankton in the proximity of dominant water-soldier (Stratiotes aloides). Freshwat. Biol. 9: 233–249; 1979.

    Article  Google Scholar 

  • Canfield, D.E., Jr.; Shireman, J.W.; Colle, D.E.; Haller, W.T.; Watkins, C.E., II; Maceina, M.J. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41: 497–501; 1984.

    Article  CAS  Google Scholar 

  • Carpenter, S.; Lodge, D. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370; 1986.

    Article  Google Scholar 

  • Christensen, K.K.; Andersen, F.Ø. Influence of Littorella uniflora on phosphorus retention in sediment supplied with artificial porewater. Aquat. Bot. 55: 183–197; 1996.

    Article  CAS  Google Scholar 

  • De Meester, L.; Maas, S.; Dierckens, K.; Dumont, H.J. Habitat selection and patchiness in Scapholeberis: horizontal distribution and migration of S. mucronata in a small pond. J. Plankton Res. 15: 1129–1139; 1993.

    Article  Google Scholar 

  • Flessa, H. Plant-induced changes in the redox potential of the rhizospheres of the submerged vascular macrophytes Myriophyllum verticillatum L. and Ranunculus circinatus L. Aquat. Bot. 47: 119–129; 1994.

    Article  Google Scholar 

  • Forsberg, C; Kleiven, S.; Willén, T. Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot. 38: 289–294; 1990.

    Article  Google Scholar 

  • Frodge, J.D.; Thomas, G.L.; Pauley, G.B. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquat. Bot. 38: 231–248; 1990.

    Article  Google Scholar 

  • Godmaire, H.; Planas, D. Influence of Myriophyllum spicatum L. on the species composition, biomass and primary productivity of phytoplankton. Aquat. Bot. 23: 299–308; 1986.

    Article  Google Scholar 

  • Gross, E.M. Allelopathische Interaktionen zwischen Makrophyten und Epiphyten: Die Rolle hydrolysierbarer Polyphenole aus Myriophyllum spicatum. Dissertation, Univ. of Kiel. Göttingen: Cuvillier Verlag; 1995.

    Google Scholar 

  • Gross, E.M.; Meyer, H.; Schilling, G. Release and ecological impact of algicidal hydrolyzable polyphenols in Myriophyllum spicatum. Phytochemistry 41: 133–138; 1996.

    Article  CAS  Google Scholar 

  • Hansson, L.A.; Carpenter, S.R. Relative importance of nutrient availability and food chain for size and community composition in phytoplankton. Oikos 67: 257–263; 1993.

    Article  Google Scholar 

  • Irvine, K.; Moss, B.; Balls, H. The loss of submerged plants with eutrophication. II. Relationships between fish and Zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107; 1989.

    Article  Google Scholar 

  • Jasser, I. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32; 1995.

    Article  CAS  Google Scholar 

  • Jeppesen, E.; Jensen, J.P.; Kristensen, P.; Sondergaard, M.; Mortensen, E.; Sortkjær, O.; Olrik, K. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227; 1990.

    Article  Google Scholar 

  • Jeppesen, E.; Sondergaard, M.; Kanstrup, E.; Petersen, B.; Eriksen, R.B.; Hammershoj, M.; Mortensen, E.; Jensen, J.P.; Have, A. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30; 1994.

    Article  CAS  Google Scholar 

  • Jeppesen, E.; Søndergaard, M.; Kronvang, B.; Jensen, J.P.; Svendsen, L.M.; Lauridsen, T.L. Lake and catchment management in Denmark. In: Harper, D.; Brierley, B.; Ferguson, A.; Phillips, G.; Madgwick, J., eds. Ecological basis for lake and reservoir management. London: J. Wiley & Sons (submitted).

    Google Scholar 

  • Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Hald Møller, P.; Sandby, K. Changes in nitrogen retention in shallow eutrophic lakes following a decline in the density of cyprinids. (submitted a).

    Google Scholar 

  • Jeppesen, E.; S0ndergaard, Ma.; Søndergaard, Mo.; Christoffersen, K.; Jürgens, K.; Theil-Nielsen, J.; Schlüter, L. Cascading trophic interactions in the littoral zone of a shallow lake. Limnol. Oceanogr. (submitted b).

    Google Scholar 

  • Jones, R.C. The effect of submersed aquatic vegetation on phytoplankton and water quality in the tidal freshwater Potomac river. J. Freshwat. Ecol. 5: 279–288; 1990.

    Article  CAS  Google Scholar 

  • Kemp, W.M.; Boynton, W.R.; Twilley, J.C.; Ward, L.G. Influence of submersed vascular plants on ecological processes in upper Chesapeake Bay. In: Kennedy, V.S., ed. The estuary as a filter. Orlando: Academic Press; 1984.

    Google Scholar 

  • Kufel, L.; Ozimek, T. Can Chara control phosphorus cycling in Lake Lukajno (Poland)? Hydrobiologia 275/276: 277–283; 1994.

    Article  Google Scholar 

  • Larocque, I.; Mazumder, A.; Prouix, M.; Lean, D.R.S.; Pick, F.R. Sedimentation of algae: relationships with biomass and size distribution. Can. J. Fish. Aquat. Sci. 53: 1133–1142; 1996.

    Article  Google Scholar 

  • Lauridsen, T.; Pedersen, L.J.; Jeppesen, E.; Søndergaard, M. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283–2294; 1996.

    Article  Google Scholar 

  • Leah, R.T.; Moss, B.; Forrest, D. The role of predation in causing major changes in the limnology of a hypereutrophic lake. Int. Rev. Ges. Hydrobiol. 65: 223–247; 1980.

    Article  CAS  Google Scholar 

  • Moss, B.; Balls, H.R.; Irvine K.; Stansfield, J. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. Appl. Ecol. 23: 391–414; 1986.

    Article  CAS  Google Scholar 

  • Moss, B.; Stansfield, J.; Irvine, K.; Perrow, M.R.; Phillips, G. Progressive restoration of a shallow lake—a 12-year experiment in isolation, sediment removal and biomanipula-tion. J. Appl. Ecol. 33: 71–86; 1996.

    Article  Google Scholar 

  • Moss, B.; Beklioglu, M.; Carvalho, L.; Kilinc, S.; McGowan, S.; Stephen, D. Vertically challenged limnology: contrasts between deep and shallow lakes. Hydrobiologia 342/343: 257–267; 1997.

    Article  CAS  Google Scholar 

  • Nielsen, S.L.; Sand-Jensen, K. Regulation of photosynthetic rates of submerged rooted macrophytes. Oecologia 81: 364–368; 1989.

    Google Scholar 

  • O’Dell, K.M.; VanArman, J.; Welch, B.H.; Hill, S.D. Changes in water chemistry in a macrophyte-dominated lake before and after herbicide treatment. Lake Reserv. Manage. 11: 311–316; 1995.

    Article  Google Scholar 

  • Ozimek, T.; van Donk, E.; Gulati, R.D. Can macrophytes be useful in the biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201: 399–409; 1990.

    Article  Google Scholar 

  • Pokorny, J.; Kvet; Ondok, J.P.; Toul, Z.; Ostry, I. Production-ecological analysis of a plant community dominated by Elodea canadensis Michx. Aquat. Bot. 19: 263–292; 1984.

    Article  Google Scholar 

  • Reinertsen, H.; Jensen, A.; Kokksvik, J.I.; Langeland, A.; Olsen, Y. Effects of fish removal on the limnetic ecosystem of a shallow lake. Can. J. Fish. Aquat. Sci. 47: 166–173; 1990.

    Article  Google Scholar 

  • Reynolds, C.S. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrobiol. 49: 220–236; 1987.

    Article  Google Scholar 

  • Rørslett, B.; Berge, D.; Johansen, S.W. Lake enrichment by submersed macrophytes: a Norwegian whole-lake experience with Elodea canadensis. Aquat. Bot. 26: 325–340; 1986.

    Article  Google Scholar 

  • Sand-Jensen, K. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquat. Bot. 32: 5–25; 1989.

    Article  Google Scholar 

  • Sarnelle, O. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecol. Monogr. 63: 129–149; 1993.

    Article  Google Scholar 

  • Schriver, P.; Bøgestrand, J.; Jeppesen, E.; Søndergaard, M. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutropic lake. Freshwat. Biol. 33: 255–270; 1995.

    Article  Google Scholar 

  • Sher-Kaul, S.; Oertli, B.; Castella, E.; Lachavanne, J-B. Relationship between biomass and surface area of six submerged aquatic plant species. Aquat. Bot. 51: 147–154; 1995.

    Article  Google Scholar 

  • Sommer, U. Some size relationships in phytoflagellated motility. Hydrobiologia 161:125–131; 1988.

    Article  Google Scholar 

  • Søndergaard, M. Seasonal variations in the loosely sorbed phosphorus fraction of the sediment of a shallow and hypereutrophic lake. Environ. Geol. Wat. Sci. 11:115–121; 1988.

    Article  Google Scholar 

  • Søndergaard, M.; Jeppesen, E.; Mortensen, E.; Dall, E.; Kristensen, P.; Sortkjær, O. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased Zooplankton grazing. Hydrobiologia 200/201: 229–240; 1990.

    Article  Google Scholar 

  • Stansfield, J.H.; Perrow, M.R.; Tench, L.D.; Jowitt, A.J.D.; Taylor, A.A.L. Do macrophytes act as refuges for grazing cladocera against fish predation? Wat. Sci. Techn. 32: 217–220; 1995.

    Article  Google Scholar 

  • Stephen, D.; Moss, B.; Phillips, G.L. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342/343: 27–34; 1997.

    Article  CAS  Google Scholar 

  • Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by Zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486; 1984.

    Article  Google Scholar 

  • van Donk, E.; Gulati, R.D. Transition of a lake to turbid state six years after biomanipula-tion: mechanisms and pathways. Wat. Sci. Techn. 32: 197–206; 1995.

    Google Scholar 

  • van Donk, E.; Grimm, M.P.; Gulati, R.D.; Klein Breteler, J.P.G. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289; 1990.

    Article  Google Scholar 

  • Watson, S.; McCauley, E.; Downing, J.A. Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Can. J. Fish. Aquat. Sci. 49: 2605–2610; 1992.

    Article  CAS  Google Scholar 

  • Weisner, S.; Eriksson, G.; Granéli, W.; Leonardson, L. Influence of macrophytes on nitrate removal in wetlands. Ambio 23: 363–366; 1994.

    Google Scholar 

  • Wium-Andersen, S.; Christophersen, C.; Houen, G. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190; 1982.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Søndergaard, M., Moss, B. (1998). Impact of Submerged Macrophytes on Phytoplankton in Shallow Freshwater Lakes. In: Jeppesen, E., Søndergaard, M., Søndergaard, M., Christoffersen, K. (eds) The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0695-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0695-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6871-0

  • Online ISBN: 978-1-4612-0695-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics