Skip to main content

Encapsulation and Immobilization Techniques

  • Chapter
Cell Encapsulation Technology and Therapeutics

Abstract

Cells are generally found in an immobilized state in natural environments. In biotechnology, immobilization provides protection to the cell from unfavorable conditions, washout, shear, and immunological rejection. Moreover, immobilization provides for an organization of the cells, enabling synergistic interactions between adjacent cells. Multicellular organisms result from higher levels of cell organization and structure that result from a form of cell immobilization. It is therefore not surprising that scientists and engineers seriously consider cell immobilization as a means of solving technological problems involving the handling and processing of cellular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audet, P and Lacroix, C. 1989. Proc Biochem. 24: 217.

    CAS  Google Scholar 

  • Audet P, Paquin C, Lacroix C. 1990. Appl. Microbiol. Biotechnol. 32: 662.

    Article  CAS  Google Scholar 

  • Babensee JE, DeBoni U, Sefton MV. 1992. J. Biomed. Mater. Res. 26: 1401.

    Article  PubMed  CAS  Google Scholar 

  • Bano, MC, Cohen, S, Visscher, KB, Allcock, HR, Langer, R. 1991. Biotechnol. 9: 468.

    Article  CAS  Google Scholar 

  • Barbotin JN, Nava Saucedo JE, Thimasset B. 1990. In: Physiology of immobilized cells, de Bont JAM, Visser J, Mattiasson B, Tramper J (eds.), Elsevier, Amsterdam, p. 487.

    Google Scholar 

  • Berger R, Ruhlemann I. 1988. Acta Biotechnol. 8: 401.

    Article  CAS  Google Scholar 

  • Bornstein P, Sage H. 1980. Ann. Rev. Biochem. 49: 957.

    Article  PubMed  CAS  Google Scholar 

  • Bugarski B, Jovanovic G, Vunjak-Novakovic G. 1993. In: Fundamentals of animal cell encapsulation and immobilization, Goosen MFA (ed.), Boca Raton: CRC Press, p. 267.

    Google Scholar 

  • Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld RJ, Vunjak G. 1994a. AIChE J., 40(6): 1026.

    Article  Google Scholar 

  • Bugarski B, Smith J, Wu J, Goosen MFA. 1994b. Biotechnol. Techn. 7: 677.

    Article  Google Scholar 

  • Buitelaar RM, Hulst AC, Tramper J. 1990. In: Physiology of immobilized cells, deBont JAM, Visser J, Mattiasson B, Tramper J (eds.), Elsevier, Amsterdam, p. 205.

    Google Scholar 

  • Cairns P, Morris VJ, Miles MJ, Brownsey GJ. 1986. Food Hydrocolloids 1:89.

    Article  CAS  Google Scholar 

  • Camelin I, Lacroix C, Paquin C, Prèvost H, Cachon R, Divies C. 1993. Biotechnol. Prog. 9: 291.

    Article  PubMed  CAS  Google Scholar 

  • Cantarella M, Scardi V, Alfani F. 1983. In: Proceedings Biotech. 83, London, p. 1051.

    Google Scholar 

  • Carenza M, Veronese FM. 1994. J. Control. Rel. 29: 187.

    Article  CAS  Google Scholar 

  • Champagne C. (ed) 1994. Immobilization of cells for application in the food industry. In: Critical Reviews in Biotechnology 14: 2.

    Google Scholar 

  • Chang TMS. 1964. Semipermeable microcapsules. Science 146: 524.

    Article  PubMed  CAS  Google Scholar 

  • Charwat, AF. 1977. Rev. Sci. Instrum. 48: 1034.

    Article  Google Scholar 

  • Chibata I, Tosa T, Sato T, Takata I. 1987. Methods Enzymol. 135: 189.

    Article  PubMed  CAS  Google Scholar 

  • Chicheportiche J-M. 1993. PhD thesis, Paris VI, France.

    Google Scholar 

  • Clark AH, Ross-Murphy SB. 1987. In: Advances of polymer sciences, Vol. 83, Springer-Verlag, Berlin, p. 57.

    Google Scholar 

  • Constandinides A, Mehta N. 1991. Biotechnol. Bioeng. 37: 1010.

    Article  Google Scholar 

  • Dautzenberg H, Loth F, Fechner K, Mehlis B, Pommerening K. 1985. Makromol Chem-Suppl. 9: 203.

    Article  CAS  Google Scholar 

  • Dautzenberg H, Stange J, Mitzner S, Lukanoff B. 1996. In: Immobilized Cells: Basics and Applications. Wijffels RH, Buitelaar RM, Bucke C, Tramper J (Eds) Elsevier Science B. V. p 181.

    Google Scholar 

  • De Alteriis E, Parascandola P, Pecorrella MA, Scardi V. 1988. Biotechnol. Techn. 2: 205.

    Article  Google Scholar 

  • Donova MV, Kuz’kina IF, Arinbasarova AY, Pashkin II, Markvicheva EA, Baklashova TG, Sukhodolskaya GV, Fokina VV, Kirsh YE, Koshcheyenko KA, Zubov VP. 1993. Biotechnol. Technique. 76: 415.

    Article  Google Scholar 

  • Dos Santos APM, Leenen EJTM, Ripoll MM, van der Sluis C, van Vliet T, Tramper J, Wijffels RH. 1997. Biotechnol. Bioeng. 56(5): 517.

    Article  Google Scholar 

  • Douglas JA, Sefton MV. 1990. Biotechnol. Bioeng. 36: 653.

    Article  PubMed  CAS  Google Scholar 

  • Dupuy B, Gin H, Ducassou D. 1988. J. Biomed. Mater. Res. 22: 1061.

    Article  PubMed  CAS  Google Scholar 

  • Farid MA, Eldiwany AL, Elenshashy HA. 1994. Acta Biotechnol. 14: 303.

    Article  CAS  Google Scholar 

  • Foster BC, Coutts RT, Pasutto FM, Dossetor JB. 1983. Biotechnol. Lett. 5: 693.

    Article  CAS  Google Scholar 

  • Freeman A. 1987. Methods Enzymol. 135: 216.

    Article  PubMed  CAS  Google Scholar 

  • Fukui S, Tanaka A. 1984. Adv. Biochem. Eng./Biotechnol. 29: 1.

    Article  CAS  Google Scholar 

  • Furasaki S, Seki M. 1992. Adv. Biochem. Eng./Biotechnol. 46: 162.

    Google Scholar 

  • Gemeiner P, Kurillova L, Malovikova A, Toth D, Tomasovicova D. 1989. Folia Microbiol. 34: 214.

    Article  CAS  Google Scholar 

  • Gibson W. 1994. In: Thickening and gelling agents for food, Imeson A. (ed.). Blackie Academic & Professional, London, p. 227.

    Google Scholar 

  • Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM. 1985. Biotechnol. Bioeng. 27: 146.

    Article  PubMed  CAS  Google Scholar 

  • Goosen MFA. (ed.) 1993. Fundamentals of animal cell encapsulation and immobilization, CRC Press, Boca Raton.

    Google Scholar 

  • Grasdalen H, Smidsrod, O. 1987. Carbohydr. Polym. 7: 371.

    Article  CAS  Google Scholar 

  • Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ. 1993. Biotechnol. Bioeng. 42: 1157.

    Article  PubMed  CAS  Google Scholar 

  • Guiseley KB. 1989. Enzyme Microb. Technol. 11: 706.

    Article  CAS  Google Scholar 

  • Hartmeier, W. 1986. Immobilizierte biokatalysatoren, Springer-Verlag, Berlin.

    Google Scholar 

  • Hocknull MD, Lilly MD. 1990. Appl. Microbiol. Biotechnol. 33: 148.

    Article  PubMed  CAS  Google Scholar 

  • Hunik JH, Tramper J. 1993. Biotechnol. Prog. 1993(9) 186.

    Article  Google Scholar 

  • Hunik JH. 1993. Biotechnol. Prog. 9: 186.

    Article  PubMed  CAS  Google Scholar 

  • Hunkeler D, Prokop A, Dimar S, Haralson M, Wang TG. 1996. Water soluble polymers for immunoisolation: Complex coacervation and cytotoxicity. Proceedings of the BRG Internat. Workshop: Bioencapsulation V, Potsdam, Germany, Sept. 22-25, 1996.

    Google Scholar 

  • Hunkeler D. 1997. Polymers for bioartificial organs, Proceedings of International Workshop on Bioencapsulation VI, Barcelona, Spain, Aug. 30-Sept. 1, 1997.

    Google Scholar 

  • Hyndman CL, Groboillot AF, Poncelet D, Champagne CP, Neufeld RJ. 1993. J. Chem. Technol. Biotechnol. 56: 259.

    Article  CAS  Google Scholar 

  • Iwai, S, Kitao, T. 1994. Wastewater treatment with microbial crobial films. Lancaster: Technomic.

    Google Scholar 

  • King GA, Daugulis AJ, Faulkner P, Goosen MFA. 1987. Biotechnol. Prog. 3:231.

    Article  CAS  Google Scholar 

  • Klein J, Kressdorf B. 1989. Angew. Makromol. Chem. 166/167: 293.

    Article  Google Scholar 

  • Koo J, Chang TMS. 1993. Int. J. Artif. Organs 16: 557.

    PubMed  CAS  Google Scholar 

  • Kuo M-S, Mort AJ, Dell, A. 1986. Carbohydr. Res. 156: 173.

    Article  CAS  Google Scholar 

  • Landau M. 1992. Introduction to aquaculture, New York: John Wiley.

    Google Scholar 

  • Lane, WR. 1947. Rev. Sci. Instrum. 24: 98.

    Article  Google Scholar 

  • Larisch BC, Poncelet D, Champagne CP, Neufeld RJ. 1994. J. Microencapsul. 11: 189.

    Article  PubMed  CAS  Google Scholar 

  • Larsson PO, Ohlson S, Mosbach K. 1976. Nature 263:796.

    Article  PubMed  CAS  Google Scholar 

  • Levy M-C, Edwards-Lèvy F. 1996. J. Microencapsul. 13: 169.

    Article  PubMed  CAS  Google Scholar 

  • Lim F, Sun AM. 1980. Science 210: 908.

    Article  PubMed  CAS  Google Scholar 

  • Lusta KA, Starostina NG, Fikhte BA. 1990. In: Physiology of immobilized cells, deBont JAM, Visser J, Mattiasson B, Tramper J (eds.), Amsterdam; Elsevier, p. 557.

    Google Scholar 

  • Mansfeld J, Forster M, Hoffman T, Schellenberger A. 1995. Enzyme Microb. Technol. 17: 11.

    Article  CAS  Google Scholar 

  • Markvicheva EA, Kuz’kina IF, Pashkin II, Plechko TN, Kirsh YE, Zubov VP. 1991. Biotechnol. Technique. 5: 223.

    Article  CAS  Google Scholar 

  • Martinsen A, Skjak-Braek G, Smidsrod O. 1989. Biotechnol. Bioeng. 33: 79.

    Article  PubMed  CAS  Google Scholar 

  • Mattiasson B. 1983. Immobilized cells and organelles, Vol. I and II, Boca Raton: CRC Press.

    Google Scholar 

  • McKnight CA, Goosen MFA, Penney C, Sun D. 1988. J. Bioact. Compat. Polym. 3: 334.

    Article  CAS  Google Scholar 

  • Moo-Young M. (ed.) 1988. Bioreactor immobilized enzymes and cells: Fundamentals and applications. London: Elsevier Applied Science.

    Google Scholar 

  • Moore GK, Roberts GAF. 1980. Int. J. Biol. Macromol. 2: 7377.

    Google Scholar 

  • Mosbach K. 1984. Ann. N.Y. Acad. Sci. 434: 239.

    Article  PubMed  CAS  Google Scholar 

  • Muzzarelli RAA. 1977. Oxford: Chitin, Pergamon Press.

    Google Scholar 

  • Nambu M. 1983. Koubunshi-Kakou 32: 523.

    Google Scholar 

  • Nava Saucedo JE, Roisin C, Bienaim C, Ribeiro T, Barbotin J-N. 1996. Int. Workshop on Bioencapsulation V, Potsdam, Germany, Sept. 23–25.

    Google Scholar 

  • Navarro AR, Rubio MC, Callieri DAS. 1983. Eur. J. Appl. Microbiol. Biotechnol. 17: 148.

    Article  CAS  Google Scholar 

  • Neufeld RJ, Peleg JS, Rokem JS, Pines O, Goldberg I. 1991. Enz. Microb. Technol. 13: 991–996.

    Article  CAS  Google Scholar 

  • Nilsson K, Brodelius P, Mosbach K. 1987. Methods Enzymol. 135: 222.

    Article  PubMed  CAS  Google Scholar 

  • Nir R, Lamed R, Gueta L, Sahar E. 1990. Appl. Environ. Microbiol. 56: 2870.

    PubMed  CAS  Google Scholar 

  • Norton S, Lacroix C. 1990. Biotechnol. Techn. 21: 351.

    Google Scholar 

  • Ochiai H, Shimizu S, Tadokoro Y, Murakami I. 1981. Polymer. 22: 1456.

    Article  CAS  Google Scholar 

  • Ogawa T, Takamura K, Koishi M, Kondo T. 1972. Bull. Chem. Soc. Jap. 45: 2329.

    Article  CAS  Google Scholar 

  • Okhamafe AO, Goosen MFA. 1993. In: Fundamentals of animal cell encapsulation and immobilization, Goosen MFA (ed.), Boca Raton: CRC Press, p. 55.

    Google Scholar 

  • O’Neil MA, Selverdran RR, Morris VJ. 1983. Carbohydr. Res. 124: 123.

    Article  Google Scholar 

  • O’Shea GM, Goosen MFA, Sun AM. 1984. Biochim. Biophys. Acta 804: 133.

    Article  PubMed  Google Scholar 

  • Pandya Y, Knorr D. 1991. Process Biochem. 26: 75.

    Article  CAS  Google Scholar 

  • Perols C, Piffaut B, Scher J, Ramet JP, Poncelet D. 1997. Enzyme Microbial Technology. 20: 57.

    Article  CAS  Google Scholar 

  • Poncelet D, Poncelet De Smet B, Neufeld RJ. 1988. 38th Can. Chem. Eng. Conf. Edmonton, Oct 2–5.

    Google Scholar 

  • Poncelet D, Neufeld RJ. 1989. Biotechnol. Bioeng. 33: 95.

    Article  PubMed  CAS  Google Scholar 

  • Poncelet D, Poncelet De Smet B, Neufeld RJ. 1990. J. Membr. Sci. 50: 249.

    Article  CAS  Google Scholar 

  • Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. 1992. Appl. Microbiol. Biotechnol. 38: 39.

    Article  PubMed  CAS  Google Scholar 

  • Poncelet D, Poncelet De Smet B, Beaulieu C, Neufeld RJ. 1993. In: Fundamentals of animal cell encapsulation and immobilization, Goosen MFA. (ed.), Boca Raton: CRC Press, p. 113.

    Google Scholar 

  • Poncelet D, Bugarski B, Amsden BG, Zhu J, Neufeld R, Goosen MFA. 1994. Appl. Microbiol. Biotechnol. 42: 251.

    Article  CAS  Google Scholar 

  • Poncelet D, Babak VG, Neufeld RJ, Goosen MF, Burgarski B. 1998. Advanced Colloid Science.

    Google Scholar 

  • Prusse U, Bruske F, Breford J, Vorlop KD. 1996. Int. Workshop on Bioencapsulation V, Potsdam, Germany, Sept. 23-25.

    Google Scholar 

  • Rayleigh JWS. 1878. Proc. London Math. Soc. 10, 4.

    Article  Google Scholar 

  • Rha C, Rodriguez-Sanchez D, Kienzle-Sterzer C. 1984. In: Biotechnology in the marine polysaccharides. Colwell RR, Pariser ER, Sinkey AJ (eds) Hemisphere Publishing Corp, Washington, p. 283.

    Google Scholar 

  • Rinaudo M. 1988. In: Gums and stabilizers for the food industry. Phillips GO, Williams PA, Wedlock DJ (eds.), IRL Press, Washington, DC, p. 301.

    Google Scholar 

  • Sanderson GR, Bell VL, Ortega DA. 1989. Cereal Foods World 34: 991.

    CAS  Google Scholar 

  • Savart F. 1833. Annales de Chimie. 53: 337.

    Google Scholar 

  • Schlameus W. 1995. Encapsulation and Controlled Release of Food Ingredients. 590: 96.

    Article  CAS  Google Scholar 

  • Sefton MV, Broughton RL, Sugamori ME, Mallabone CL. 1987. J. Control. Rel. 6:177.

    Article  CAS  Google Scholar 

  • Sefton MV, Kharlip L, Horvarth V, Roberts T. 1992. J. Control. Rel. 19: 289.

    Article  CAS  Google Scholar 

  • Skjak-Braek G, Grasdalen H, Smidsrod O. 1989. Carbohydr. Polym. 10:31.

    Article  Google Scholar 

  • Skryabin GK, Koshcheenko KA. 1987. Methods Enzymol. 135: 198.

    Article  PubMed  CAS  Google Scholar 

  • Smidsrod O, Haug A, Lian B. 1972. Acta Chem. Scand. 26:71.

    Article  Google Scholar 

  • Smidsrod O. 1974. Faraday Discuss. Chem. Soc. 57: 263.

    Article  Google Scholar 

  • Sonomoto K, Hoq MM, Tanaka A, Fukui S. 1981. J. Ferment. Technol. 59: 465.

    CAS  Google Scholar 

  • Stevenson WTK, Sefton MV. 1988. J. Appl. Polym. Sci. 32: 1541.

    Article  Google Scholar 

  • Stevenson WTK, Sefton MV. 1993. In: Fundamentals of animal cell encapsulation and immobilization, Goosen MFA (ed.), Boca Raton: CRC Press, p. 143.

    Google Scholar 

  • Sun AM and O’Shea GM. 1985. Methods Enzymol. 137: 575.

    Article  Google Scholar 

  • Sun YM, Chang CC, Huang WF, Liang HC. 1997. J. Control. Release 47: 247.

    Article  CAS  Google Scholar 

  • Tampion J, Tampion MD. 1987. Immobilized cells: principles and applications, Cambridge: Cambridge University Press.

    Google Scholar 

  • Tanaka A, Sonomoto K, Fukui S. 1984. Ann. N.Y. Acad. Sci. 434: 479.

    Article  CAS  Google Scholar 

  • Thibault J-F, Rinaudo M. 1985. Br. Polym. J. 17: 181.

    Article  CAS  Google Scholar 

  • Thomas WR. 1992. In: Thickening and gelling agents for food, Imeson A (ed.), London: Blackie Academic & Professional, p. 25.

    Chapter  Google Scholar 

  • Toth D, Tomasovicova D, Gemeiner P, Kurillova L. 1989. Folia Microbiol. 34: 515.

    Article  CAS  Google Scholar 

  • Uludag H, Horvath V, Black JP, Sefton MV. 1994. Biotechnol. Bioeng. 44: 1199.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbossche GMR, Bracke ME, Cuvelier CA, Border HE, Mareel MM, Remon J-P. 1993. J. Pharm. Pharmacol macol. 45: 115.

    Article  CAS  Google Scholar 

  • Varfolomeyev SD, Rainina El, Lozinsky VI, Kalyuzhny SV, Sinitsyn AP, Makhlis TA, Bachurina GP, Bokova IG, Sklyankina OA, Agafonov EB. 1990. In: Physiology of immobilized cells, de Bont JAM, Visser J, Mattiasson B, Tramper J (eds.), Amsterdam: Elsevier, p. 325.

    Google Scholar 

  • Veliky IA, McLean RCJ. 1994. Immobilized biosystems: Theory and practical applications, Blackie Acadaemic London.

    Google Scholar 

  • Vlahov R, Pramatarova V, Spassov G, Sucholdolskaya GV, Koshcheenko KA. 1990. Appl. Microbiol. Biotechnol. 33: 172–175.

    Article  PubMed  CAS  Google Scholar 

  • Vorlop KD, Klein J. 1981. Biotechnol. Lett. 2: 9.

    Article  Google Scholar 

  • Vorlop KD, Klein J. 1987. Methods Enzymol. 135: 259.

    Article  PubMed  CAS  Google Scholar 

  • Webb C, Black GM, Atkinson B. 1986. Process engineering aspects of immobilized cell systems, Inst. Chem. Eng., Pergamon, Rugby.

    Google Scholar 

  • Willaert RG, Baron GV. 1996. Reviews in chemical engineering 12(1-2): 1.

    Article  CAS  Google Scholar 

  • Willaert RG, Baron GV, De Backer L. (eds.) 1995. Immobilized living cell systems: Modelling and experimental techniques, Chichester: John Wiley & Sons.

    Google Scholar 

  • Woodward J. 1985. Immobilized cells and enzymes, Oxford: IRL Press.

    Google Scholar 

  • Woodward J. 1988. J Microbiol. Methods 8: 91.

    Article  CAS  Google Scholar 

  • Wu K-YA, Wisecarver KD. 1992. Biotechnol. Bioeng. 39: 447.

    Article  PubMed  CAS  Google Scholar 

  • Young DV. 1993. In: Fundamentals of animal cell encapsulation and immobilization, Goosen MFA. (ed.), Boca Raton: CRC Press, p. 243.

    Google Scholar 

  • Zhong YP, Dong LC, Hoffman AS. 1988. In: Proceedings of Third World Biomaterials Congress, April 21–25, Kyoto, Japan

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dulieu, C., Poncelet, D., Neufeld, R.J. (1999). Encapsulation and Immobilization Techniques. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics