Skip to main content

Frequency Analysis and Pitch Perception

  • Chapter
Human Psychophysics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 3))

Abstract

This chapter is concerned with two main areas: frequency analysis and pitch perception. Frequency analysis refers to the action of the ear in resolving (to a limited extent) the sinusoidal components in a complex sound; this ability is also known as frequency selectivity and frequency resolution. It plays a role in many aspects of auditory perception but is most often demonstrated and measured by studying masking. Studies of pitch perception are mainly concerned with the relationships between the physical properties of sounds and the perceived pitches of those sounds and with the underlying mechanisms that explain these relationships. One important aspect of pitch perception is frequency discrimination, which refers to the ability to detect changes in frequency over time and which is (at least partly) a separate ability from frequency selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American National Standards Institute (1973) American national psychoacoustical terminology. S3.20. New York.

    Google Scholar 

  • Arthur RM, Pfeiffer RR, Suga N (1971) Properties of “two-tone inhibition” in primary auditory neurones. J Physiol 212:593–609.

    PubMed  CAS  Google Scholar 

  • Attneave F, Olson RK (1971) Pitch as a medium: A new approach to psychophysical scaling. Am J Psychol 84:147–166.

    PubMed  CAS  Google Scholar 

  • Bachern A (1950) Tone height and tone chroma as two different pitch qualities. Acta Psychol 7:80–88.

    Google Scholar 

  • Bacon SP, Moore BCJ (1986) Temporal effects in masking and their influence on psychophysical tuning curves. J Acoust Soc Am 80:1638–1654.

    PubMed  CAS  Google Scholar 

  • Bacon SP, Viemeister NF (1985) The temporal course of simultaneous tone-on-tone masking. J Acoust Soc Am 78:1231–1235.

    PubMed  CAS  Google Scholar 

  • Bilsen FA (1966) Repetition pitch: Monaural interaction of a sound with the same, but phase shifted, sound. Acustica 17:265–300.

    Google Scholar 

  • Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Am 55:292–296.

    PubMed  CAS  Google Scholar 

  • Burns EM, Viemeister NF (1976) Nonspectral pitch. J Acoust Soc Am 60:863–869.

    Google Scholar 

  • Burns EM, Viemeister NF (1981) Played again SAM: Further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Google Scholar 

  • Buus S (1985) Release from masking caused by envelope fluctuations. J Acoust Soc Am 78:1958–1965.

    PubMed  CAS  Google Scholar 

  • Buus S, Schorer E, Florentine M, Zwicker E (1986) Decision rules in detection of simple and complex tones. J Acoust Soc Am 80:1646–1657.

    PubMed  CAS  Google Scholar 

  • Chistovich LA (1957) Frequency characteristics of masking effect. Biophys 2:743–755.

    Google Scholar 

  • Coninx F (1978) The detection of combined differences in frequency and intensity. Acustica 39:137–150.

    Google Scholar 

  • Delgutte B (1988) Physiological mechanisms of masking. In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 204–212.

    Google Scholar 

  • Delgutte B (1990) Physiological mechanisms of psychophysical masking: Observations from auditory-nerve fibers. J Acoust Soc Am 87:791–809.

    PubMed  CAS  Google Scholar 

  • Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22:622–630.

    Google Scholar 

  • Emmerich DS, Ellermeier W, Butensky B (1989) A re-examination of the frequency discrimination of random-amplitude tones, and a test of Henning’s modified energy-detector model. J Acoust Soc Am 85:1653–1659.

    Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: Some physiological pros and cons. Audiology 17:369–420.

    PubMed  CAS  Google Scholar 

  • Evans EF, Pratt SR, Cooper NP (1989) Correspondence between behavioural and physiological frequency selectivity in the guinea pig. Br J Audiol 23:151–152.

    Google Scholar 

  • Feth LL (1972) Combinations of amplitude and frequency differences in auditory discrimination. Acustica 26:67–77.

    Google Scholar 

  • Flanagan JL, Saslow MG (1958) Pitch discrimination for synthetic vowels. J Acoust Soc Am 30:435–442.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Google Scholar 

  • Florentine M, Buus S (1981) An excitation-pattern model for intensity discrimination. J Acoust Soc Am 70:1646–1654.

    Google Scholar 

  • Fourcin AJ (1965) The pitch of noise with periodic spectral peaks. Fifth Int Cong Acoust la, B 42.

    Google Scholar 

  • Fourcin AJ (1970) Central pitch and auditory lateralization. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: AW Sijthoff, pp. 319–328.

    Google Scholar 

  • Gässier G (1954) Über die Horschwelle fur Schallereignisse mit verschieden breitem Frequenzspektrum. Acustica 4:408–414.

    Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ, Nimmo-Smith I (1984) Comparison of auditory filter shapes derived with three different maskers. J Acoust Soc Am 75:536–546.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ, Patterson RD, Nimmo-Smith I (1984) Dynamic range and asymmetry of the auditory filter. J Acoust Soc Am 76:419–427.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Srulovicz P (1977) Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 337–346.

    Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Google Scholar 

  • Greenwood DD (1971) Aural combination tones and auditory masking. J Acoust Soc Am 50:502–543.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    PubMed  CAS  Google Scholar 

  • Hall JW III, Haggard MP, Fernandes MA (1984) Detection in noise by spectro- temporal pattern analysis. J Acoust Soc Am 76:50–56.

    PubMed  CAS  Google Scholar 

  • Hamilton PM (1957) Noise masked threshold as a function of tonal duration and masking noise bandwidth. J Acoust Soc Am 29:506–511.

    Google Scholar 

  • Henning GB (1966) Frequency discrimination of random amplitude tones. J Acoust Soc Am 39:336–339.

    PubMed  CAS  Google Scholar 

  • Henning GB (1967) A model for auditory discrimination and detection. J Acoust Soc Am 42:1325–1334.

    PubMed  CAS  Google Scholar 

  • Higgins MB, Turner CW (1990) Summation bandwidths at threshold in normal and hearing-impaired listeners. J Acoust Soc Am 88:2625–2630.

    PubMed  CAS  Google Scholar 

  • Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885–1894.

    PubMed  CAS  Google Scholar 

  • Houtgast T (1973) Psychophysical experiments on “tuning curves” and “two-tone inhibition.” Acustica 29:168–179.

    Google Scholar 

  • Houtgast T (1974) Lateral suppression in hearing. Ph.D. Thesis, Free University of Amsterdam. Amsterdam: Academische Pers. BV.

    Google Scholar 

  • Houtgast T (1977) Auditory-filter characteristics derived from direct-masking data and pulsation-threshold data using a rippled-noise masker. J Acoust Soc Am 62: 409–415.

    PubMed  CAS  Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones: Evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Google Scholar 

  • Houtsma AJM, Smurzynski, J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310.

    Google Scholar 

  • Huggins WH, Cramer EM (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Google Scholar 

  • Javel E (1980) Coding of AM tones in the chinchilla auditory nerve: Implications for the pitch of complex tones. J Acoust Soc Am 68:133–146.

    PubMed  CAS  Google Scholar 

  • Johnson-Davies DB, Patterson RD (1979) Psychophysical tuning curves: Restricting the listening band to the signal region. J Acoust Soc Am 65:765–770.

    Google Scholar 

  • Klein MA, Hartmann WM (1981) Binaural edge pitch. J Acoust Soc Am 70:51–61.

    PubMed  CAS  Google Scholar 

  • Kubovy M, Cutting JE, McGuire RM (1974) Hearing with the third ear: Dichotic perception of a melody without monaural familiarity cues. Science 186:272–274.

    PubMed  CAS  Google Scholar 

  • Licklider JCR (1956) Auditory frequency analysis. In: Cherry C (ed) Information Theory. New York: Academic Press, pp. 253–268.

    Google Scholar 

  • Lundeen C, Small AM (1984) The influence of temporal cues on the strength of periodicity pitches. J Acoust Soc Am 75:1578–1587.

    PubMed  CAS  Google Scholar 

  • Lutfi RA, Patterson RD (1984) On the growth of masking asymmetry with stimulus intensity. J Acoust Soc Am 76:739–745.

    PubMed  CAS  Google Scholar 

  • Maiwald D (1967) Die Berechnung von Modulationsschwellen mit Hilfe eines Funk-tionsschemas. Acustica 18:193–207.

    Google Scholar 

  • McFadden DM (1986) The curious half-octave shift: Evidence for a basalward migration of the traveling-wave envelope with increasing intensity. In: Salvi RJ, Henderson D, Hamernik RP, Colletti V (eds) Basic and Applied Aspects of Noise-Induced Hearing Loss. New York: Plenum Press.

    Google Scholar 

  • Meddis R, Hewitt M (1991a) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, Hewitt M (1991b) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity. J Acoust Soc Am 89:2883–2894.

    Google Scholar 

  • Miller GA, Taylor W (1948) The perception of repeated bursts of noise. J Acoust Soc Am 20:171–182.

    Google Scholar 

  • Moore BCJ (1972). Some experiments relating to the perception of pure tones: Possible clinical applications. Sound 6:73–79.

    Google Scholar 

  • Moore BCJ (1973a) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610–619.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1973b) Some experiments relating to the perception of complex tones. Quart J Exp Psychol 25:451–475.

    CAS  Google Scholar 

  • Moore BCJ (1977) Effects of relative phase of the components on the pitch of three-component complex tones. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 349–358.

    Google Scholar 

  • Moore BCJ (1978) Psychophysical tuning curves measured in simultaneous and forward masking. J Acoust Soc Am 63:524–532.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1980) Detection cues in forward masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 222–229.

    Google Scholar 

  • Moore BCJ (1981) Interactions of masker bandwidth with signal duration and delay in forward masking. J Acoust Soc Am 70:62–68.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1982) An Introduction to the Psychology of Hearing, Second Edition. London: Academic Press.

    Google Scholar 

  • Moore BCJ (1986) Parallels between frequency selectivity measured psychophysically and in cochlear mechanics. Scand Audiol Suppl 25:139–152.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1987) Distribution of auditory-filter bandwidths at 2 kHz in young normal listeners. J Acoust Soc Am 81:1633–1635.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1989) An Introduction to the Psychology of Hearing, Third Edition. London: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1981) Auditory filter shapes derived in simultaneous and forward masking. J Acoust Soc Am 70:1003–1014.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1982a) Contralateral and ipsilateral cueing in forward masking. J Acoust Soc Am 71:942–945.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1982b) Interpreting the role of suppression in psychophysical tuning curves. J Acoust Soc Am 72:1374–1379.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750–753.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1985) The danger of using narrowband noise maskers to measure suppression. J Acoust Soc Am 77:2137–2141.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1986) The role of frequency selectivity in the perception of loudness, pitch and time. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 251–308.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1987) Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear Res 28:209–225.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1988) Effects of the relative phase of the components on the pitch discrimination of complex tones by subjects with unilateral cochlear impairments. In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 421–430.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1989) Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation. J Acoust Soc Am 86:1722–1732.

    Google Scholar 

  • Moore BCJ, O’Loughlin BJ (1986) The use of nonsimultaneous masking to measure frequency selectivity and suppression. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 179–250.

    Google Scholar 

  • Moore BCJ, Peters RW (1992) Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. J Acoust Soc Am 91:2881–2893.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Rosen SM (1979) Tune recognition with reduced pitch and interval information. Quart J Exp Psychol 31:229–240.

    CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Roberts B (1984) Refining the measurement of psychophysical tuning curves. J Acoust Soc Am 76:1057–1066.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Shailer MJ (1984) Frequency and intensity difference limens for harmonics within complex tones. J Acoust Soc Am 75:550–561.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Peters RW (1985) Relative dominance of individual partials in determining the pitch of complex tones. J Acoust Soc Am 77:1853–1860.

    Google Scholar 

  • Moore BCJ, Poon PWF, Bacon SP, Glasberg BR (1987) The temporal course of masking and the auditory filter shape. J Acoust Soc Am 81:1873–1880.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Peters RW, Glasberg BR (1990) Auditory filter shapes at low center frequencies. J Acoust Soc Am 88:132–140.

    PubMed  CAS  Google Scholar 

  • Neff DL (1985) Stimulus parameters governing confusion effects in forward masking. J Acoust Soc Am 78:1966–1976.

    PubMed  CAS  Google Scholar 

  • Ohgushi K, Hatoh T (1992) The musical pitch of high frequency tones. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 207–212.

    Google Scholar 

  • Ohm GS (1843) Uber die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann Phys Chem 59:513–565.

    Google Scholar 

  • O’Loughlin BJ, Moore BCJ (1981) Improving psychoacoustical tuning curves. Hear Res 5:343–346.

    PubMed  Google Scholar 

  • Patterson RD (1973) The effects of relative phase and the number of components on residue pitch. J Acoust Soc Am 53:1565–1572.

    PubMed  CAS  Google Scholar 

  • Patterson RD (1974) Auditory filter shape. J Acoust Soc Am 55:802–809.

    PubMed  CAS  Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654.

    PubMed  CAS  Google Scholar 

  • Patterson RD (1987) A pulse ribbon model of monaural phase perception. J Acoust Soc Am 82:1560–1586.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Henning GB (1977) Stimulus variability and auditory filter shape. J Acoust Soc Am 62:649–664.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 123–177.

    Google Scholar 

  • Patterson RD, Nimmo-Smith I (1980) Off-frequency listening and auditory-filter asymmetry. J Acoust Soc Am 67:229–245.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Wightman FL (1976) Residue pitch as a function of component spacing. J Acoust Soc Am 59:1450–1459.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Nimmo-Smith I, Weber DL, Milroy R (1982) The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram and speech threshold. J Acoust Soc Am 72:1788–1803.

    PubMed  CAS  Google Scholar 

  • Pick GF (1980) Level dependence of psychophysical frequency resolution and auditory filter shape. J Acoust Soc Am 68:1085–1095.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1984) Frequency threshold curves and simultaneous masking functions in single fibres of the guinea pig auditory nerve. Hear Res 14:245–256.

    PubMed  CAS  Google Scholar 

  • Pierce JR, Lipes R, Cheetham C (1977) Uncertainty concerning the direct use of time information in hearing: Place cues in white spectra stimuli. J Acoust Soc Am 61: 1609–1621.

    PubMed  CAS  Google Scholar 

  • Plomp R (1964) The ear as a frequency analyser. J Acoust Soc Am 36:1628–1636.

    Google Scholar 

  • Plomp R (1967) Pitch of complex tones. J Acoust Soc Am 41:1526–1533.

    PubMed  CAS  Google Scholar 

  • Plomp R (1976) Aspects of Tone Sensation. London: Academic Press.

    Google Scholar 

  • Plomp R, Mimpen AM (1968) The ear as a frequency analyzer. II. J Acoust Soc Am 43:764–767.

    PubMed  CAS  Google Scholar 

  • Plomp R, Steeneken HJM (1968) Interference between two simple tones. J Acoust Soc Am 43:883–884.

    PubMed  CAS  Google Scholar 

  • Port E (1963) Über die Lautstarke einzelner kurzer Schallimpulse. Acustica 13:212–223.

    Google Scholar 

  • Ritsma RJ (1962) Existence region of the tonal residue. I. J Acoust Soc Am 34:1224–1229.

    Google Scholar 

  • Ritsma RJ (1963) Existence region of the tonal residue. II. J Acoust Soc Am 35:1241–1245.

    Google Scholar 

  • Ritsma RJ (1967) Frequencies dominant in the perception of the pitch of complex sounds. J Acoust Soc Am 42:191–198.

    PubMed  CAS  Google Scholar 

  • Ritsma RJ (1970) Periodicity detection. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: AW Sijthoff, pp. 250–263.

    Google Scholar 

  • Scharf B (1961) Complex sounds and critical bands. Psychol Bull 58:205–217.

    PubMed  CAS  Google Scholar 

  • Scharf B (1970) Critical bands. In Tobias JV (ed) Foundations of Modern Auditory Theory, Volume I. New York: Academic Press, pp. 159–202.

    Google Scholar 

  • Schooneveldt GP, Moore BCJ (1989) Comodulation masking release as a function of masker bandwidth, modulator bandwidth and signal duration. J Acoust Soc Am 85:273–281.

    PubMed  CAS  Google Scholar 

  • Schorer E (1986) Critical modulation frequency based on detection of AM versus FM tones. J Acoust Soc Am 79:1054–1057.

    PubMed  CAS  Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: AW Sijthoff, pp. 41–54.

    Google Scholar 

  • Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Am 34:1418–1424.

    Google Scholar 

  • Sellick PM, Russell IJ (1979) Two-tone suppression in cochlear hair cells. Hear Res 1:227–236.

    Google Scholar 

  • Shailer MJ, Moore BCJ, Glasberg BR, Watson N, Harris S (1990) Auditory filter shapes at 8 and 10 kHz. J Acoust Soc Am 88:141–148.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1976) Two-tone unmasking and suppression in a forward-masking situation. J Acoust Soc Am 59:1460–1470.

    PubMed  CAS  Google Scholar 

  • Shepard RN (1964) Circularity in judgments of relative pitch. J Acoust Soc Am 36: 2346–2353.

    Google Scholar 

  • Shower G, Biddulph R (1931) Differential pitch sensitivity of the ear. J Acoust Soc Am 2:275–287.

    Google Scholar 

  • Siebert WM (1968) Stimulus transformations in the peripheral auditory system. In Kolers PA, Eden M (eds) Recognizing Patterns. Cambridge, MA: MIT Press, pp. 104–133.

    Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: Place or periodicity mechanisms. Proc IEEE 58:723–730.

    Google Scholar 

  • Small AM (1959) Pure-tone masking. J Acoust Soc Am 31:1619–1625.

    Google Scholar 

  • Smoorenburg GF (1970) Pitch perception of two-frequency stimuli. J Acoust Soc Am 48:924–941.

    PubMed  CAS  Google Scholar 

  • Spiegel MF (1981) Thresholds for tones in maskers of various bandwidths and for signals of various bandwidths as a function of signal frequency. J Acoust Soc Am 69:791–795.

    PubMed  CAS  Google Scholar 

  • Srinivasan R (1971) Auditory critical bandwidth for short duration signals. J Acoust Soc Am 50:616–622.

    PubMed  CAS  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    PubMed  CAS  Google Scholar 

  • Stevens SS (1935) The relation of pitch to intensity. J Acoust Soc Am 6:150–154.

    Google Scholar 

  • Terhardt E (1974) Pitch, consonance and harmony. J Acoust Soc Am 55:1061–1069.

    PubMed  CAS  Google Scholar 

  • Tyler RS, Hall JW III, Glasberg BR, Moore BCJ, Patterson RD (1984) Auditory filter asymmetry in the hearing impaired. J Acoust Soc Am 76:1363–1368.

    PubMed  CAS  Google Scholar 

  • Verschuure J (1981) Pulsation patterns and nonlinearity of auditory tuning. II. Analysis of psychophysical results. Acustica 49:296–306.

    Google Scholar 

  • Verschuure J, van Meeteren AA (1975) The effect of intensity on pitch. Acustica 32:33–44.

    Google Scholar 

  • Vogten LLM (1974) Pure tone masking: A new result from a new method. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing. Berlin: Springer-Verlag, pp. 142–155.

    Google Scholar 

  • Ward WD (1954) Subjective musical pitch. J Acoust Soc Am 26:369–380.

    Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285.

    Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    PubMed  CAS  Google Scholar 

  • Yost WA (1982) The dominance region and ripple noise pitch: A test of the peripheral weighting model. J Acoust Soc Am 72:416–425.

    PubMed  CAS  Google Scholar 

  • Yost WA, Hill R (1979) Models of the pitch and pitch strength of ripple noise. J Acoust Soc Am 66:400–410.

    Google Scholar 

  • Yost WA, Hill R, Perez-Falcon T (1978) Pitch and pitch discrimination of broadband signals with rippled power spectra. J Acoust Soc Am 63:1166–1173.

    PubMed  CAS  Google Scholar 

  • Yost WA, Harder PJ, Dye RH (1987) Complex spectral patterns with interaural differences: Dichotic pitch and the “Central Spectrum.” In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 190–201.

    Google Scholar 

  • Zwicker E (1952) Die Grenzen der Hörbarkeit der Amplitudenmodulation und der Frequenzmodulation eines Tones. Acustica 2:125–133.

    Google Scholar 

  • Zwicker E (1956) Die elementaren Grundlagen zur Bestimmung der Informations-kapazität des Gehörs. Acustica 6:365–381.

    Google Scholar 

  • Zwicker E (1961) Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J Acoust Soc Am 33:248.

    Google Scholar 

  • Zwicker E (1965a) Temporal effects in simultaneous masking by white-noise bursts. J Acoust Soc Am 37:653–663.

    Google Scholar 

  • Zwicker E (1965b) Temporal effects in simultaneous masking and loudness. J Acoust Soc Am 38:132–141.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1970) Masking and psychological excitation as consequences of the ear’s frequency analysis. In Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: AW Sijthoff, pp. 376–394.

    Google Scholar 

  • Zwicker E, Fasti H (1972) On the development of the critical band. J Acoust Soc Am 52:699–702.

    Google Scholar 

  • Zwicker E, Feldtkeller R (1967) Das Ohr als Nachtrichtenempfänger. Stuttgart: Hirzel.

    Google Scholar 

  • Zwicker E, Scharf B (1965) A model of loudness summation. Psychol Rev 72:3–26.

    PubMed  CAS  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical bandwidth in loudness summation. J Acoust Soc Am 29:548–557.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Moore, B.C.J. (1993). Frequency Analysis and Pitch Perception. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Human Psychophysics. Springer Handbook of Auditory Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2728-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2728-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7644-9

  • Online ISBN: 978-1-4612-2728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics