Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 152))

Abstract

The boreal forest biome occupies 13 × 106km2. It comprises approximately 25% of the world’s forest land (Olson et al. 1983; Apps et al. 1993) and includes 2.6 × 106 km2 of peatlands (Gorham 1991). Changes in the extent or functioning of the boreal forest could substantially modify global climate through (1) release of its large stocks of soil carbon (Post et al. 1982; Kurz and Apps 1995), (2) changes in methane fluxes from peatlands (Reeburgh and Whalen 1992; Roulet and Ash 1992), or (3) changes in winter albedo and regional energy exchange (Bonan et al. 1992; Thomas and Rowntree 1992). Boreal forests have also been implicated as the “missing sink” for atmospheric carbon dioxide (Ciais et al. 1995). For these reasons, there has been considerable interest and speculation about future changes in the extent, structure, and functioning of the boreal forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alcamo J (ed) (1994) IMAGE 2.0: integrated modeling of global climate change. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Alexandrova YD (1980) The Arctic and Antarctic: Their Division into Geobotanical Areas. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Apps MJ, Kurz WA, Luxmoore RJ, Nilsson LO, Sedjo RA, Schmidt R, et al. (1993) Boreal forests and tundra. Water Air and Soil Pollution 70:39–53.

    Article  CAS  Google Scholar 

  • Ayres MP, MacLean SF, Jr (1987) Development of birch leaves and the growth energetics of Epirrita autumnata (Geometridae). Ecology 68:558–568.

    Article  Google Scholar 

  • Baker WL (1993) Spatially heterogeneous multi-scale response of landscapes to fire suppression. Oikos 66:66–71.

    Article  Google Scholar 

  • Berg A, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conservation Biology 8:718–731.

    Article  Google Scholar 

  • Bergeron Y, Flannigan MD (1995) Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest. Water Air and Soil Pollution 82:437–444.

    Article  CAS  Google Scholar 

  • Bernes C (1994) Biologisk mängfald i Sverige.

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718.

    Article  Google Scholar 

  • Bonan GB, Chapin FS III, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29:145–167.

    Article  Google Scholar 

  • Bridgham SD, Johnston CA, Pastor J, Updegraff K (1995) Potential feedbacks of northern wetlands on climate change. Bioscience 45:262–274.

    Article  Google Scholar 

  • Britta KR, Jones PD, Schweingruber FH, Shiyatov SG, Cook ER (1995) Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature 376:156–159.

    Article  Google Scholar 

  • Brubaker LB, Anderson PM, Hu FS (1995) Arctic tundra biodiversity: a temporal perspective from late Quaternary pollen records. In: Chapin FS III, Körner C (eds) Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences, pp. 111–125. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bryant JP, Chapin FS III (1986) Browsing-woody plant interactions during boreal forest plant succession. In: Van Cleve K, Chapin FS, III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest Ecosystems in the Alaskan Taiga: A Synthesis of Structure and Function, pp. 213–225. Springer-Verlag, New York.

    Google Scholar 

  • Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, Cambridge UK.

    Book  Google Scholar 

  • Cederlund G, Bergström R (1996) Trends in the moose-forest system in Fennoscandia, with special reference to Sweden. In: DeGraaf RM, Miller RI (eds) Conservation of Faunal Diversity in Forested Landscapes, pp. 265–281. Chapman and Hall, London.

    Chapter  Google Scholar 

  • Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391.

    Article  CAS  Google Scholar 

  • Chapin FS III, Starfield AM (1997) Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Climatic Change 35:449–461.

    Article  Google Scholar 

  • Chapin FS III, Van Cleve K, Tryon PR (1983) Influence of phosphorus on the growth and biomass allocation of Alaskan taiga tree seedlings. Canadian Journal of Forest Research 13:1092–1098.

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KG, Laundre JA (1995) Response of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, et al. (1997) Biotic control over the functioning of ecosystems. Science 277:500–504.

    Article  CAS  Google Scholar 

  • Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bulletin of the American Meteorological Society 74:33–47.

    Article  Google Scholar 

  • Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Nature 269:1098–1102.

    CAS  Google Scholar 

  • Daneil K, Lundberg P, Niemelä P (1996) Species richness in mammalian herbivores: patterns in the boreal zone. Ecography 19:404–409.

    Article  Google Scholar 

  • Danell K, Willebrand T, Baskin L (1998) Mammalian herbivores in the boreal forests: their numerical fluctuations and use by man. Conservation Ecology 2 (www. eonsecol.org).

    Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In: Peters RL, Lovejoy T (eds) Global warming and biodiversity, pp. 297–308. Yale University Press, New Haven.

    Google Scholar 

  • Field C, Chapin FS III, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecology and Systematics 23:201–235.

    Article  Google Scholar 

  • Flanagan PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Canadian Journal of Forest Research 13:795–817.

    Article  CAS  Google Scholar 

  • Flannigan MDF, Van Wagner CE (1991) Climate change and wildfire in Canada. Canadian Journal of Forest Research 21:66–72.

    Article  Google Scholar 

  • Fleming RA, Volney JA (1995) Effects of climate change on insect defoliator population processes in Canada’s boreal forest: some plausible scenarios. Water Air and Soil Pollution 82:445–454.

    Article  CAS  Google Scholar 

  • Fung I, Prentice K, Matthews E, Lerner J, Russell G (1983) Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere. Journal of Geophysical Research 88:1281–1294.

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195.

    Article  Google Scholar 

  • Haila Y, Järvinen O (1990) Northern conifer forests and their bird species assemblages. In: Keast A (eds) Biogeography and ecology of forest bird communities, pp. 61–85. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Heliövaara K, Väisänen R (1984) Effects of modern forestry on northwestern European forest invertebrates: a synthesis. Acta Forestalia Fennica 189:1–32.

    Google Scholar 

  • Helle P, Järvinen O (1986) Population trends of North Finnish land birds in relation to their habitat selection and changes in forest structure. Oikos 46:107–115.

    Article  Google Scholar 

  • Helle P, Niemi GJ (1994) Bird community dynamics in boreal forests. In: DeGraaf RM (eds) Wildlife Conservation in Forested Landscapes. Elsevier, The Hague.

    Google Scholar 

  • Helle T (1981) Studies on wild forest reindeer (Rangifer tarandus fennicus Lönn.) and semi-domestic reindeer (Rangifer tarandus tarandus L.) in Finland. Acta Universitatis, Ouluensis Series A, Biologica 12:1–283.

    Google Scholar 

  • Hobbie SE, Jensen DB, Chapin FS III (1993) Resource supply and disturbance as controls over present and future plant diversity. In: Schulze E-D, Mooney HA (eds) Ecosystem Function of Biodiversity, pp. 385–407. Springer-Verlag, Berlin.

    Google Scholar 

  • Hogg EH, Hurdle PA (1995) The aspen parkland in western Canada: a dry-climate analogue for the future boreal forest? In: Apps MJ, Price DT (eds) Boreal Forests and Global Change, pp. 391–400. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Holling CS (1992) The role of forest insects in structuring the boreal landscape. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest, pp. 170–191. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Holsten EH (1990) Spruce beetle activity in Alaska: 1920–1989. U.S. Department of Agriculture, Forest Service, Forest Pest Management, Alaska Region, Anchorage.

    Google Scholar 

  • Järvinen O, Väisänen RA (1973) Species diversity of Finnish birds: I. Zoogeographical zonation based on land birds. Ornis Fennici 50:93–125.

    Google Scholar 

  • Järvinen O, Väisänen R, Kuusela K (1977) Effects of modern forestry on the numbers of breeding birds in Finland in 1945–1975. Silva Fennica 11:284–294.

    Google Scholar 

  • Johnston CA (1994) Ecological engineering of wetlands by beavers. In: Mitsch WJ (ed) Global Wetlands: Old World and New, pp. 379–384. Elsevier, Amsterdam.

    Google Scholar 

  • Kaila L, Martikainen P, Punttila P, Yakovlov E (1994) Saproxylic beetles (Coleoptera) on dead birch trunks decayed by different polypore species. Annales Zoologici Fennici 31:97–108.

    Google Scholar 

  • Kallio P, Lehtonen J (1973) Birch forest damage caused by Oporinia automna (Bkh.) in 1965–66 in Utsjoki, N. Finland. Report of the Kevo Subarctic Research Station 10:55–69.

    Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, et al. (1996) Climate models-projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995. The science of climate change, pp. 285–357. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kauppi PE, Mielikäinen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149.

    Article  CAS  Google Scholar 

  • Kouki J, Niemelä P, Viitasaari M (1994) Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Annales Zoologici Fennici 31:83–88.

    Google Scholar 

  • Kullman L, Engelman OE (1997) Neoglacial climatic control of subarctic Picea abies stand dynamics and range limit in northern Sweden. Arctic and Alpine Research 29:315–326.

    Article  Google Scholar 

  • Kurz WA, Apps MJ (1995) An analysis of future carbon budgets of Canadian boreal forests. Water Air and Soil Pollution 82:321–331.

    Article  CAS  Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118.

    Article  Google Scholar 

  • McCune B (1993) Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405–411.

    Article  Google Scholar 

  • Melillo JM, Prentice IC, Farquhar GD, Schulze E-D, Sala OE (1996) Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate Change 1995. The Science of Climate Change, pp. 445–481. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Michaelson GL, Ping C-L, Kimble JM (1996) Carbon storage and distribution in tundra soils of arctic Alaska, U.S.A. Arctic and Alpine Research 28:414–424.

    Article  Google Scholar 

  • Mönkkönen M, Welsh DA (1994) A biogeographical hypothesis on the effects of human caused landscape changes on the forest bird communities of Europe and North America. Annales Zoologici Fennici 31:61–70.

    Google Scholar 

  • Niemelä J (1997) Invertebrates and boreal forest management. Conservation Biology 11:601–610.

    Article  Google Scholar 

  • Nilsson SG, Ericson L (1997) Conservation of plant and animal populations in theory and practice. Ecological Bulletin 46:117–139.

    Google Scholar 

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga, pp. 121–137. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence W, Prudhomme T, et al. (1994) Transient nature of CO2 fertilization in arctic tundra. Nature 371:500–503.

    Article  CAS  Google Scholar 

  • Olson JS, Watts JA, Allison A J (1983) Carbon in Live Vegetation of Major World Ecosystems. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Pastor J, Mladenoff DJ (1992) The southern boreal-northern hardwood forest border. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest, pp. 216–240. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Pastor J, Post WM (1988) Responses of northern forests to CO2-induced climate change. Nature 334:55–58.

    Article  Google Scholar 

  • Pastor J, Mladenoff DJ, Haila Y, Bryant J, Payette S (1996) Biodiversity and ecosystem processes in boreal regions. In: Mooney HA, Cushman JH, Medina E, Sala OE, Schulze E-D (eds) Functional Roles of Biodiversity: A Global Perspective, pp. 33–69. John Wiley and Sons, New York.

    Google Scholar 

  • Payette S (1992) Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB (eds) A Systems Analysis of the Global Boreal Forest, pp. 144–169. Cambridge University Press, Cambridge, UK.

    Chapter  Google Scholar 

  • Payette S, Filion L, Gauthier L, Boutin Y (1985) Secular climate change in old-growth tree-line vegetation of northern Quebec. Nature 315:135–138.

    Article  Google Scholar 

  • Payette S, Filion L, Delwaide A, Begin C (1989) Reconstruction of tree-line vegetation response to long-term climate change. Nature 341:429–432.

    Article  Google Scholar 

  • Pettersson RB, Ball JP, Renhorn K-E, Esseen P-A, Sjöberg S (1995) Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biological Conservation 74:57–63.

    Article  Google Scholar 

  • Pielke RA, Vidale PL (1995) The boreal forest and the polar front. Journal of Geophysical Research 100D:25755–25758.

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159.

    Article  CAS  Google Scholar 

  • Prentice KC, Fung IY (1990) The sensitivity of terrestrial carbon storage to climate change. Nature 346:48–51.

    Article  Google Scholar 

  • Reeburgh WS, Whalen SC (1992) High latitude ecosystems as CH4 sources. Ecological Bulletin 42:62–70.

    CAS  Google Scholar 

  • Richardson DH, Nieboer E (1981) Lichens and pollution monitoring. Endeavour 5.

    Google Scholar 

  • Ritchie JC (1987) Postglacial Vegetation of Canada. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ritchie JC, MacDonald GM (1986) The patterns of post-glacial spread of white spruce. Journal of Biogeography 13:527–540.

    Article  Google Scholar 

  • Roulet NT, Ash R (1992) Low boreal wetlands as a source of atmospheric methane. Journal of Geophysical Research 97:3739–3749.

    Article  CAS  Google Scholar 

  • Schulze E-D (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–783.

    Article  PubMed  CAS  Google Scholar 

  • Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–675.

    Article  CAS  Google Scholar 

  • Sjöberg K (1995) Fauna and flora management in forestry. In: Hytönen M (ed) Multiple-Use Forestry in the Nordic Countries, pp. 191–243. Gummerus Printing, Jyväskylä, Finland.

    Google Scholar 

  • Smith TM, Shugart HH (1993) The transient response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526.

    Article  Google Scholar 

  • Starfield AM, Chapin FS III (1996) Model of transient changes in arctic and boreal vegetation in response to climate and land use change. Ecological Applications 6:842–864.

    Article  Google Scholar 

  • Stocks BJ (1991) The extent and impact of forest fires in northern circumpolar countries. In: Levine JL (ed) Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, pp. 197–202. The Massachusetts Institute of Technology Press, Cambridge, MA.

    Google Scholar 

  • Stokland JN (1994) Biological diversity and conservation strategies in Scandinavian boreal forests.

    Google Scholar 

  • Thomas G, Rowntree PR (1992) The boreal forests and climate. Quarterly Journal of the Royal Meteorological Society 118:469–497.

    Article  Google Scholar 

  • Tian H, Xu H, Hall CAS (1995) Pattern and change of a boreal forest landscape in Northeastern China. Water Air and Soil Pollution 82:465–476.

    Article  CAS  Google Scholar 

  • Tonteri T (1998) Species richness of boreal understory forest vegetation in relation to site type and successional factors. Annales Zoologici Fennici 31:53–60.

    Google Scholar 

  • Trofymow JA, Preston CM, Prescott CE (1995) Litter quality and its potential effect on decay rates of materials from Canadian forests. Water Air and Soil Pollution 82:215–226.

    Article  CAS  Google Scholar 

  • Väisänen R, Heliövaara K (1994) Hot spots of insect diversity in northern Europe. Annales Zoologici Fennici 31:71–81.

    Google Scholar 

  • Väisänen R, Biström O, Heliövaara K (1993) Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests? Biodiversity Conservation 2:95–113.

    Article  Google Scholar 

  • Van Cleve K, Alexander V (1981) Nitrogen cycling in tundra and boreal ecosystems. Ecological Bulletin 33:375–404.

    Google Scholar 

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT (1983) Productivity and nutrient cycling in taiga forest ecosystems. Canadian Journal of Forest Research 13:747–766.

    Article  Google Scholar 

  • Van Cleve K, Chapin FS, III, Dryness CT, Viereck LA (1991) Element cycling in taiga forest: state-factor control. Bioscience 41:78–88.

    Article  Google Scholar 

  • Vedrova EF (1995) Carbon pools and fluxes of 25-year old coniferous and deciduous stands in middle Siberia. Water Air and Soil Pollution 82:239–246.

    Article  CAS  Google Scholar 

  • Viereck LA (1973) Wildfire in the taiga of Alaska. Quaternary Research 3:465–495.

    Article  Google Scholar 

  • Viereck LA, Dyrness CT, Van Cleve K, Foote MJ (1983) Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Canadian Journal of Forest Research 13:703–720.

    Article  Google Scholar 

  • Virkkala R (1987) Effects of forest management on birds breeding in northern Finland. Annales Zoologici Fennici 24:281–294.

    Google Scholar 

  • Zang H (1990) Population decrease of coal tit Parus ater in the Harz mountains due to forest damage (‘Waldsterben’). Vogelwelt 111:18–28.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapin, F.S., Danell, K. (2001). Boreal Forest. In: Chapin, F.S., Sala, O.E., Huber-Sannwald, E. (eds) Global Biodiversity in a Changing Environment. Ecological Studies, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0157-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0157-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95286-4

  • Online ISBN: 978-1-4613-0157-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics