Skip to main content

Equivalence of Green’s Function and the Fourier Series Representation of Composites with Periodic Microstructure

  • Chapter
Micromechanics and Inhomogeneity

Abstract

This work is concerned with modeling the nonlinear mechanical deformation of composites comprised of a periodic microstructure under small displacement conditions at elevated temperatures. The practical motivation for such work stems from the need to design and optimize new multiphase materials and to predict their micromechanical and bulk material behavior under in-service thermomechanical loading conditions.

Two different methods, one based on a Fourier series approach and the other on a Green’s function approach, are used in modeling the micromechanical behavior of the composite material. These two methods are shown to be equivalent to each other via the Poisson sum formula. Although the constitutive formulations are based on a micromechanical approach, it should be stressed that the resulting equations are volume averaged to produce overall “effective” constitutive relations which relate the bulk, volume averaged, stress increment to the bulk, volume averaged, strain increment. As such, they are macromodels which can be used directly in nonlinear finite element structural analysis programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboudi, J. (1987), Closed form constitutive equations for metal matrix composites, Int. J. Engng. Sci., 25, No. 9, 1229–1240.

    Article  MATH  Google Scholar 

  • Bahei-El-Din, Y. A., Dvorak, G. J., Lin, J., Shah, R., and Wu, J.-F. (1987), Local fields and overall response of fibrous and particulate metal matrix composites, Final Technical Report to Alcoa Laboratories under Contract No. 379(52R)053(22L), Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York 12181, November.

    Google Scholar 

  • Barnett, D. M. (1971), The elastic energy of a straight dislocation in an infinite anisotropic elastic medium, Phys. Stat. Sol., (b), 48, 419–428.

    Article  ADS  Google Scholar 

  • Barnett, D. M. (1972), The precise evaluation of derivatives of the anisotropic elastic Green’s functions, Phys. Stat. Sol., (b), 49, 741–748.

    Article  ADS  Google Scholar 

  • Bodner, S. R. (1987), Review of a unified elastic-viscoplastic theory, in Unified Constitutive Equations for Plastic Deformation and Creep of Engineering Alloys, edited by A. K. Miller, Elsevier Applied Science, Amsterdam.

    Google Scholar 

  • Devriès, F. and Léné, F. (1987), Homogenization at set macroscopic stress: Numerical implementation and application. La Reserche Aérospatiale, No. 1, 33–51.

    Google Scholar 

  • Duvaut, G. (1988), Functional and mechanical analysis of continuous media-application to the study of elastic composites with periodic structure: Homogenization, NASA Technical Translation Report, NASA TT-20188.

    Google Scholar 

  • Dvorak, G. J. (1986), Thermal expansion of elastic-plastic composite materials, ASME J. Appl. Mech., 53, 737–743.

    Article  ADS  MATH  Google Scholar 

  • Dvorak, G. J. and Bahei-El-Din, Y. A. (1982), Plasticity analysis of fibrous composites, ASME J. Appl. Mech., 49, 327–335.

    Article  ADS  MATH  Google Scholar 

  • Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., and Liu, C. H. (1988), An experimental study of elastic-plastic behavior of a fibrous boron-aluminum composite, Technical Report to the Office of Naval Research under Contract No. N00014–85-K-0247 and to the U.S. Army Research Office under Contract No. DAAG2985-K-0011 from Rensselaer Polytechnic Institute, Troy, New York 12181, February.

    Google Scholar 

  • Eshelby, J. D. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London, A241, 376–396.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gubernatis, J. E. and Krumhansl, J. A. (1975), Macroscopic engineering properties of polycrystalline materials: Elastic properties, J. Appl. Phys., 46, No. 5, 1875–1883.

    Article  ADS  Google Scholar 

  • Haritos, G. K., Hager, J. W., Amos, A. K., Salkind, M. J., and Wang, A.S.D. (1988), Mesomechanics: The microstructure-mechanics connection, Int. J. Solids Structures, 24, No. 11, 1081–1096.

    Google Scholar 

  • Iwakuma, T. and Nemat-Nasser, S. (1983), Composites with periodic microstructure, Computers and Structures, 16, Nos. 1–4, 13–19.

    Article  MATH  Google Scholar 

  • Korringa, K. (1973), Theory of elastic constants of heterogeneous media, J. Math. Phys, 14, No. 4, 509–513.

    Article  ADS  MATH  Google Scholar 

  • Lemaitre, J. and Chaboche, J. L. (1985), Mécanique des matériaux solides, Dunod, Paris.

    Google Scholar 

  • Léné, F. (1986), Damage constitutive relations for composite materials, Engng. Fracture Mech., 25, Nos. 5 /6, 713–728.

    Google Scholar 

  • Léné, F. (1987), Contribution to the study of composite materials and their damage, Translation of Thesis presented to Université Pierre et Marie Curie, Paris VI, NASA Technical Translation Report, NASA TT-20107.

    Google Scholar 

  • Léné, F. and Leguillon, D. (1982), Homogenized constitutive law for a partially cohesive composite material, Int. J. Solids Structures, 18, No. 5, 443–458.

    Article  MATH  Google Scholar 

  • Morse, P. M. and Feshbach, H. (1958), Methods of Theoretical Physics, McGraw-Hill, New York.

    Google Scholar 

  • Mura, T. (1982), Micromechanics of Defects in Solids, Martinus-Nijhoff, The Hague/ Boston/London.

    Google Scholar 

  • Nemat-Nasser, S. and Iwakuma, T. (1983), Micromechanically based constitutive relations for polycrystalline solids, NASA Conference Publication NASA CP 2271, pp. 113–136.

    Google Scholar 

  • Nemat-Nasser, S., Iwakuma, T., and Hejazi, M. (1982), On composites with periodic structure, Mech. Mater., 1, 239–267.

    Article  Google Scholar 

  • Nemat-Nasser, S. and Taya, M. (1981), On effective moduli of an elastic body containing periodically distributed voids. Quart. Appl. Math., 39, 43–59.

    Google Scholar 

  • Petrasek, D. W., McDanels, L. J., Westfall, L. J., and Stephens, J. R. (1986), Fiber-reinforced superalloy composites provide an added performance edge, Metal Progress Magazine, August.

    Google Scholar 

  • Renard, J. and Marmonier, M. F. (1987), Study of damage initiation in the matrix of a composite material by a homogenization method, La Reserche Aérospatiale, No. 6, 43–51.

    Google Scholar 

  • Sanchez-Palencia, E. (1980), Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, No. 127, Springer-Verlag, Berlin.

    Google Scholar 

  • Sanchez-Palencia, E. (1985), Homogenization Techniques for Composite Media, Lecture Notes in Physics, No. 272, edited by E. Sanchez-Palencia and A. Zaoui, Springer-Verlag, Berlin.

    Google Scholar 

  • Teodosiu, C. (1982), Elastic Models of Crystal Defects, Springer-Verlag, BerlinHeidelberg—New York, p. 90.

    Google Scholar 

  • Walker, K. P., Jordan, E. H. and Freed, A. D. (1989), Nonlinear Mesomechanics of Composites with Periodic Microstructure: First Report, NASA TM-102051.

    Google Scholar 

  • Zeller, R. and Dederichs, P. H. (1973), Elastic constants of polycrystals, Phys. Stat. Sol., (b), 55, 831–842.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Walker, K.P., Jordan, E.H., Freed, A.D. (1990). Equivalence of Green’s Function and the Fourier Series Representation of Composites with Periodic Microstructure. In: Weng, G.J., Taya, M., Abé, H. (eds) Micromechanics and Inhomogeneity. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8919-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8919-4_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8921-7

  • Online ISBN: 978-1-4613-8919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics