Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Electric Vehicle Battery Technologies

verfasst von : Kwo Young, Caisheng Wang, Le Yi Wang, Kai Strunz

Erschienen in: Electric Vehicle Integration into Modern Power Networks

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter aims at bridging the gap between chemistry scientists and electrical engineers on electric vehicle (EV) batteries. The power and energy of electric propulsion are first reviewed in Sect. 2.2. Commonly used terms to describe battery performance and characterization are then introduced in Sect. 2.3, followed by the review of various battery charging methods and EV charging schemes in Sect. 2.4. The fundamentals of EV battery technologies are addressed in Sect. 2.5. Two currently most common EV battery technologies, namely, nickel metal hydride (NiMH) and lithium-ion (Li-ion), are covered. It is targeted for giving power engineers a basic understanding of battery chemistry. The EV battery modeling is introduced in Sect. 2.6. It is important for power engineers to appreciate the fundamentals of battery chemistry and battery modeling and use it for power electronic interfacing converter design, battery management, and system level studies. Section 2.7 covers the topic on battery characterization including battery model parameter estimation, state of charge (SOC), and state of health (SOH) estimation. The battery aggregation for power grid applications is discussed in Sect. 2.8. The concept of virtual power plant (VPP) for battery aggregation is introduced to support EV’s participation in power markets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Though fuel cell vehicle (FCV) is one of the technologies under consideration of electric-drive vehicles, the durability, high cost, and production and distribution of hydrogen have hindered its development. The US Department of Energy (DOE) dropped its research support for FCV in its budget of fiscal year of 2010 [3].
 
Literatur
1.
Zurück zum Zitat Howell D (2011) 2010 Annual progress report for energy storage R&D, Vehicle Technologies Program, Energy Efficiency and Renewable Energy. U.S. Department of Energy, Washington, DC Howell D (2011) 2010 Annual progress report for energy storage R&D, Vehicle Technologies Program, Energy Efficiency and Renewable Energy. U.S. Department of Energy, Washington, DC
2.
Zurück zum Zitat Boulanger AG, Chu AC, Maxx S, Waltz DL (2011) Vehicle electrification: status and issues. Proc IEEE 99(6):1116–1138CrossRef Boulanger AG, Chu AC, Maxx S, Waltz DL (2011) Vehicle electrification: status and issues. Proc IEEE 99(6):1116–1138CrossRef
3.
Zurück zum Zitat Xu X, Wang C, Liao G, Yeh CP, Stark W (2009) Development of a plug-in hybrid electric vehicle educational demonstration unit. In: Proceedings of 2009 North American power symposium, Starkville, MS, USA, 4–6 Oct 2009 Xu X, Wang C, Liao G, Yeh CP, Stark W (2009) Development of a plug-in hybrid electric vehicle educational demonstration unit. In: Proceedings of 2009 North American power symposium, Starkville, MS, USA, 4–6 Oct 2009
4.
Zurück zum Zitat Corrigan D, Masias A (2011) Batteries for electric and hybrid vehicles. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York Corrigan D, Masias A (2011) Batteries for electric and hybrid vehicles. In: Reddy TB (ed) Linden’s handbook of batteries, 4th edn. McGraw Hill, New York
5.
Zurück zum Zitat Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, 2nd edn. CRC, London Ehsani M, Gao Y, Emadi A (2010) Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory and design, 2nd edn. CRC, London
7.
Zurück zum Zitat Coleman M, Hurley WG, Lee CK (2008) An improved battery characterization method using a two-pulse load test. IEEE Trans EC 23(2):708–713 Coleman M, Hurley WG, Lee CK (2008) An improved battery characterization method using a two-pulse load test. IEEE Trans EC 23(2):708–713
8.
Zurück zum Zitat Dhameja S (2002) Electric vehicle battery systems. Newnes, Boston Dhameja S (2002) Electric vehicle battery systems. Newnes, Boston
12.
Zurück zum Zitat Higashimoto K, Homma H, Uemura Y, Kawai H, Saibara S, Hirinaka K (2010) Automotive lithium-ion battery. Hitachi Hyoron 92(12):30–33 Higashimoto K, Homma H, Uemura Y, Kawai H, Saibara S, Hirinaka K (2010) Automotive lithium-ion battery. Hitachi Hyoron 92(12):30–33
13.
Zurück zum Zitat Moss PL, Au G, Plichta EJ, Zheng JP (2009) Investigation of solid electrolyte interface layer development during continuous cycling using ac impedance spectra and micro-structural analysis. J Power Sources 189:644–648CrossRef Moss PL, Au G, Plichta EJ, Zheng JP (2009) Investigation of solid electrolyte interface layer development during continuous cycling using ac impedance spectra and micro-structural analysis. J Power Sources 189:644–648CrossRef
14.
Zurück zum Zitat Strunz K, Louie H (2009) Cache energy control for storage: power system integration and education based on analogies derived from computer engineering. IEEE Trans Power Syst 24(1):12–19CrossRef Strunz K, Louie H (2009) Cache energy control for storage: power system integration and education based on analogies derived from computer engineering. IEEE Trans Power Syst 24(1):12–19CrossRef
16.
Zurück zum Zitat Ovshinsky SR, Fetcenko MA, Reichman B, Young K, Chao B, Im J (1997) US Patent 5,616,432 Ovshinsky SR, Fetcenko MA, Reichman B, Young K, Chao B, Im J (1997) US Patent 5,616,432
17.
Zurück zum Zitat Ovshinsky SR, Corrigan D, Venkatesan S, Young R, Fierro C, Fetcenko MA (1994) US Patent 5,348,822 Ovshinsky SR, Corrigan D, Venkatesan S, Young R, Fierro C, Fetcenko MA (1994) US Patent 5,348,822
18.
Zurück zum Zitat Esaka T, Sakagucji H, Kobayashi S (2004) Hydrogen storage in protpn-conductive perovskite-type oxide and their application to nickel-hydrogen batteries. Solid State Ionics 166(3–4):351–357CrossRef Esaka T, Sakagucji H, Kobayashi S (2004) Hydrogen storage in protpn-conductive perovskite-type oxide and their application to nickel-hydrogen batteries. Solid State Ionics 166(3–4):351–357CrossRef
19.
Zurück zum Zitat Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H, Liu M (2010) Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim Acta 55 (3):1120–1124CrossRef Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H, Liu M (2010) Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim Acta 55 (3):1120–1124CrossRef
21.
Zurück zum Zitat West JK, Higgins MP, Regalado J, George A (2009) US Patent Application 20090142655 West JK, Higgins MP, Regalado J, George A (2009) US Patent Application 20090142655
23.
Zurück zum Zitat Sun Q, Li X, Wang Z, Ji Y (2009) Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc Chin 19:176–181CrossRef Sun Q, Li X, Wang Z, Ji Y (2009) Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans Nonferrous Met Soc Chin 19:176–181CrossRef
24.
Zurück zum Zitat Fetcenko MA (2011) In: Presentation in Batteries 2011, Cannes Mandelieu, France, 20–28 Sep 2011 Fetcenko MA (2011) In: Presentation in Batteries 2011, Cannes Mandelieu, France, 20–28 Sep 2011
25.
Zurück zum Zitat Mitchell RR, Gallany BM, Thompson CV, Yang S (2011) All-carbon-nanofiber electrodes for high-energy, rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958CrossRef Mitchell RR, Gallany BM, Thompson CV, Yang S (2011) All-carbon-nanofiber electrodes for high-energy, rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958CrossRef
26.
Zurück zum Zitat Dubarry M, Vuillaume N, Liaw BY (2009) From single cell model to battery pack simulation for Li-ion batteries. J Power Sources 186:500–507CrossRef Dubarry M, Vuillaume N, Liaw BY (2009) From single cell model to battery pack simulation for Li-ion batteries. J Power Sources 186:500–507CrossRef
27.
Zurück zum Zitat Song L, Evans JW (2000) Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc 147:2086–2095CrossRef Song L, Evans JW (2000) Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc 147:2086–2095CrossRef
28.
Zurück zum Zitat Min C, Gabriel AR (2006) Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans Energy Conversion 21(2):504–511CrossRef Min C, Gabriel AR (2006) Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans Energy Conversion 21(2):504–511CrossRef
29.
Zurück zum Zitat Gomadam PM, Weidner JW, Dougal RA, White RE (2002) Mathematical modeling of lithium-ion and nickel battery systems. J Power Sources 110(2):267–24CrossRef Gomadam PM, Weidner JW, Dougal RA, White RE (2002) Mathematical modeling of lithium-ion and nickel battery systems. J Power Sources 110(2):267–24CrossRef
30.
Zurück zum Zitat Dennis DW, Battaglia VS, Belanger A (2002) Electrochemical modeling of lithium polymer batteries. J Power Source 110(2):310–320CrossRef Dennis DW, Battaglia VS, Belanger A (2002) Electrochemical modeling of lithium polymer batteries. J Power Source 110(2):310–320CrossRef
31.
Zurück zum Zitat Newman J, Thomas KE, Hafezi H, Wheeler DR (2003) Modeling of lithium-ion batteries. J Power Sources 119–121:838–843CrossRef Newman J, Thomas KE, Hafezi H, Wheeler DR (2003) Modeling of lithium-ion batteries. J Power Sources 119–121:838–843CrossRef
32.
Zurück zum Zitat Rynkiewicz R (1999) Discharge and charge modeling of lead acid batteries. Proc Appl Power Electron Conf Expo 2:707–710 Rynkiewicz R (1999) Discharge and charge modeling of lead acid batteries. Proc Appl Power Electron Conf Expo 2:707–710
33.
Zurück zum Zitat Rakhmatov D, Vrudhula S, Wallach DA (2003) A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans VLSI Syst 11(6):1019–1030CrossRef Rakhmatov D, Vrudhula S, Wallach DA (2003) A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans VLSI Syst 11(6):1019–1030CrossRef
34.
Zurück zum Zitat Rong P, Pedram M (2003) An analytical model for predicting the remaining battery capacity of lithium-ion batteries. In: Proceedings of design, automation, and test in Europe conference and exhibition, pp 1148–1149 Rong P, Pedram M (2003) An analytical model for predicting the remaining battery capacity of lithium-ion batteries. In: Proceedings of design, automation, and test in Europe conference and exhibition, pp 1148–1149
35.
Zurück zum Zitat Pascoe PE, Anbuky AH (2004) VRLA battery discharge reserve time estimation. IEEE Trans Power Electron 19(6):1515–1522CrossRef Pascoe PE, Anbuky AH (2004) VRLA battery discharge reserve time estimation. IEEE Trans Power Electron 19(6):1515–1522CrossRef
36.
Zurück zum Zitat Salameh ZM, Casacca MA, Lynch WA (1992) A mathematical model for lead-acid batteries. IEEE Trans Energy Convers 7(1):93–98CrossRef Salameh ZM, Casacca MA, Lynch WA (1992) A mathematical model for lead-acid batteries. IEEE Trans Energy Convers 7(1):93–98CrossRef
37.
Zurück zum Zitat Valvo M, Wicks FE, Robertson D, Rudin S (1996) Development and application of an improved equivalent circuit model of a lead acid battery. Proc Energy Convers Eng Conf 2:1159–1163 Valvo M, Wicks FE, Robertson D, Rudin S (1996) Development and application of an improved equivalent circuit model of a lead acid battery. Proc Energy Convers Eng Conf 2:1159–1163
38.
Zurück zum Zitat Ceraolo M (2000) New dynamical models of lead-acid batteries. IEEE Trans Power Syst 15(4):1184–1190CrossRef Ceraolo M (2000) New dynamical models of lead-acid batteries. IEEE Trans Power Syst 15(4):1184–1190CrossRef
39.
Zurück zum Zitat Barsali S, Ceraolo M (2002) Dynamical models of lead-acid batteries: implementation issues. IEEE Trans Energy Convers 17(1):16–23CrossRef Barsali S, Ceraolo M (2002) Dynamical models of lead-acid batteries: implementation issues. IEEE Trans Energy Convers 17(1):16–23CrossRef
40.
Zurück zum Zitat Schweighofer B, Raab KM, Brasseur G (2003) Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans Instrum Meas 52(4):1087–1091CrossRef Schweighofer B, Raab KM, Brasseur G (2003) Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans Instrum Meas 52(4):1087–1091CrossRef
41.
Zurück zum Zitat Gao L, Liu S, Dougal RA (2002) Dynamic lithium-ion battery model for system simulation. IEEE Trans Compon Packag Technol 25(3):495–505CrossRef Gao L, Liu S, Dougal RA (2002) Dynamic lithium-ion battery model for system simulation. IEEE Trans Compon Packag Technol 25(3):495–505CrossRef
42.
Zurück zum Zitat Baudry P, Neri M, Gueguen M, Lonchampt G (1995) Electro-thermal modeling of polymer lithium batteries for starting period and pulse power. J Power Sources 54(2):393–396CrossRef Baudry P, Neri M, Gueguen M, Lonchampt G (1995) Electro-thermal modeling of polymer lithium batteries for starting period and pulse power. J Power Sources 54(2):393–396CrossRef
43.
Zurück zum Zitat Abu-Sharkh S, Doerffel D (2004) Rapid test and non-linear model characterization of solid-state lithium-ion batteries. J Power Sources 130:266–274CrossRef Abu-Sharkh S, Doerffel D (2004) Rapid test and non-linear model characterization of solid-state lithium-ion batteries. J Power Sources 130:266–274CrossRef
44.
Zurück zum Zitat Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
45.
Zurück zum Zitat Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modelling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890CrossRef Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modelling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890CrossRef
46.
Zurück zum Zitat Tremblay O, Dessaint L-A (2009) Experimental validation of a battery dynamic model for EV applications. In: EVS24 international battery, hybrid and fuel cell electric vehicle symposium, Stavanger, Norway, 13–16 May 2009, World Electric Vehicle J 3 Tremblay O, Dessaint L-A (2009) Experimental validation of a battery dynamic model for EV applications. In: EVS24 international battery, hybrid and fuel cell electric vehicle symposium, Stavanger, Norway, 13–16 May 2009, World Electric Vehicle J 3
47.
Zurück zum Zitat Johnson VH (2001) Battery performance models in ADVISOR. J Power Sources 110:321–329CrossRef Johnson VH (2001) Battery performance models in ADVISOR. J Power Sources 110:321–329CrossRef
48.
Zurück zum Zitat Wang C, Nehrir MH, Shaw SR (2005) Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers 20(2):442–451CrossRef Wang C, Nehrir MH, Shaw SR (2005) Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers 20(2):442–451CrossRef
49.
Zurück zum Zitat Barbier C, Meyer H, Nogarede B, Bensaoud S (1994) A battery state of charge indicator for electric vehicle. In: Proceedings of the international conference of the institution of mechanical engineers, automotive electronics, London, UK, 17–19 May 1994, pp 29–34 Barbier C, Meyer H, Nogarede B, Bensaoud S (1994) A battery state of charge indicator for electric vehicle. In: Proceedings of the international conference of the institution of mechanical engineers, automotive electronics, London, UK, 17–19 May 1994, pp 29–34
50.
Zurück zum Zitat Dai HF, Wei XZ, Sun ZC (2006) Online SOC estimation of high-power lithium-ion batteries used on HEVs. In: Proceedings of IEEE ICVES 2006, pp 342–347 Dai HF, Wei XZ, Sun ZC (2006) Online SOC estimation of high-power lithium-ion batteries used on HEVs. In: Proceedings of IEEE ICVES 2006, pp 342–347
51.
Zurück zum Zitat Giglioli R, Pelacchi P, Raugi M, Zini G (1988) A state of charge observer for lead-acid batteries. Energia Elettrica 65(1):27–33 Giglioli R, Pelacchi P, Raugi M, Zini G (1988) A state of charge observer for lead-acid batteries. Energia Elettrica 65(1):27–33
52.
Zurück zum Zitat Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1: Background. J Power Sources 134(2):252–261CrossRef Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1: Background. J Power Sources 134(2):252–261CrossRef
53.
Zurück zum Zitat Rodrigues S, Munichandraiah N, Shukla A (2000) A review of state-of-charge indication of batteries by means of ac impedance measurements. J Power Sources 87(1/2):12–20CrossRef Rodrigues S, Munichandraiah N, Shukla A (2000) A review of state-of-charge indication of batteries by means of ac impedance measurements. J Power Sources 87(1/2):12–20CrossRef
54.
Zurück zum Zitat Kuo BC (1995) Digital control systems, 2nd edn. Oxford University Press, Oxford Kuo BC (1995) Digital control systems, 2nd edn. Oxford University Press, Oxford
55.
Zurück zum Zitat Barsoukov E, Kim J, Yoon C, Lee H (1999) Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load. J Power Sources 83(1/2):61–70CrossRef Barsoukov E, Kim J, Yoon C, Lee H (1999) Universal battery parameterization to yield a non-linear equivalent circuit valid for battery simulation at arbitrary load. J Power Sources 83(1/2):61–70CrossRef
56.
Zurück zum Zitat Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification. J Power Sources 134(2):262–276CrossRef Plett G (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2. Modeling and identification. J Power Sources 134(2):262–276CrossRef
57.
Zurück zum Zitat Takano K, Nozaki K, Saito Y, Negishi A, Kato K, Yamaguchi Y (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery. J Power Sources 90(2):214.223CrossRef Takano K, Nozaki K, Saito Y, Negishi A, Kato K, Yamaguchi Y (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery. J Power Sources 90(2):214.223CrossRef
58.
Zurück zum Zitat Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood Cliffs, NJMATH Ljung L (1987) System identification: theory for the user. Prentice-Hall, Englewood Cliffs, NJMATH
59.
Zurück zum Zitat Wang LY, Yin G, J-f Z, Zhao Y (2010) System identification with quantized observations. Birkhauser, Boston, MA. ISBN 978-0-8176-4955-5MATHCrossRef Wang LY, Yin G, J-f Z, Zhao Y (2010) System identification with quantized observations. Birkhauser, Boston, MA. ISBN 978-0-8176-4955-5MATHCrossRef
60.
Zurück zum Zitat Sitterly M, Wang LY, Yin G, Wang C (2011) Enhanced identification of battery models for real-time battery management. IEEE Trans Sustain Energy 2:300–308CrossRef Sitterly M, Wang LY, Yin G, Wang C (2011) Enhanced identification of battery models for real-time battery management. IEEE Trans Sustain Energy 2:300–308CrossRef
61.
Zurück zum Zitat Moore SW, Schneider P (2001) A review of cell equalization methods for lithium ion and lithium polymer battery systems. SAE Publication, Troy, MICrossRef Moore SW, Schneider P (2001) A review of cell equalization methods for lithium ion and lithium polymer battery systems. SAE Publication, Troy, MICrossRef
62.
Zurück zum Zitat Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw Hill, New York Linden D, Reddy T (2001) Handbook of batteries, 3rd edn. McGraw Hill, New York
63.
Zurück zum Zitat Kutkut NH, Wiegman HLN, Divan DM, Novotny DW (1999) Design considerations for charge equalization of an electric vehicle battery system. IEEE Trans Ind Appl 35:28–35CrossRef Kutkut NH, Wiegman HLN, Divan DM, Novotny DW (1999) Design considerations for charge equalization of an electric vehicle battery system. IEEE Trans Ind Appl 35:28–35CrossRef
64.
Zurück zum Zitat Tang M, Stuart T (2000) Selective buck-boost equalizer for series battery packs. IEEE Trans Aerospace Electron Syst 36:201–211CrossRef Tang M, Stuart T (2000) Selective buck-boost equalizer for series battery packs. IEEE Trans Aerospace Electron Syst 36:201–211CrossRef
65.
Zurück zum Zitat Pudjianto D, Ramsay C, Strbac G (2008) Microgrids and virtual power plants: concepts to support the integration of distributed energy resources. Proc Inst Mech Eng A J Power Energy 222(7):731–741CrossRef Pudjianto D, Ramsay C, Strbac G (2008) Microgrids and virtual power plants: concepts to support the integration of distributed energy resources. Proc Inst Mech Eng A J Power Energy 222(7):731–741CrossRef
66.
Zurück zum Zitat Karfopoulos E, Tsikalakis A, Karagiorgis G, Dimeas A, Christodoulou C, Tomtsi T, Hatziargyriou N (2009) Description of the off-line simulations. Task and results presentation. EUDEEP Project WP4&5, Task Force 3, Jan 2009 Karfopoulos E, Tsikalakis A, Karagiorgis G, Dimeas A, Christodoulou C, Tomtsi T, Hatziargyriou N (2009) Description of the off-line simulations. Task and results presentation. EUDEEP Project WP4&5, Task Force 3, Jan 2009
67.
Zurück zum Zitat Raab AF, Ferdowsi M, Karfopoulos E, Grau Unda I, Skarvelis-Kazakos S, Papado poulos P, Abbasi E, Cipcigan LM, Jenkins N, Hatziargyriou N, Strunz K (2011) Virtual power plant control concepts with electric vehicles. In: 16th International conference on intelligent system applications to power systems, Hersonissos, Greece, Sep 2011 Raab AF, Ferdowsi M, Karfopoulos E, Grau Unda I, Skarvelis-Kazakos S, Papado poulos P, Abbasi E, Cipcigan LM, Jenkins N, Hatziargyriou N, Strunz K (2011) Virtual power plant control concepts with electric vehicles. In: 16th International conference on intelligent system applications to power systems, Hersonissos, Greece, Sep 2011
69.
Zurück zum Zitat Lezhang L, Wang LY, Chen Z, Wang C, Lin F, Wang H (2012) Integrated system identification and state-of-charge estimation of battery systems. IEEE Trans Energy Conversion (In press) Lezhang L, Wang LY, Chen Z, Wang C, Lin F, Wang H (2012) Integrated system identification and state-of-charge estimation of battery systems. IEEE Trans Energy Conversion (In press)
Metadaten
Titel
Electric Vehicle Battery Technologies
verfasst von
Kwo Young
Caisheng Wang
Le Yi Wang
Kai Strunz
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-0134-6_2