Skip to main content

MicroRNAs as Post-Transcriptional Machines and their Interplay with Cellular Networks

  • Chapter
RNA Infrastructure and Networks

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 722))

Abstract

Gene expression is a highly controlled process which is known to occur at several levels in eukaryotic organisms. Although RNAs have been traditionally viewed as passive molecules in the pathway from transcription to translation, there is increasing evidence that their metabolism is controlled by a class of small noncoding RNAs called MicroRNAs (miRNAs). MicroRNAs (miRNAs) control essential gene regulatory pathways in both plants and animals however our understanding about their function, evolution and interplay with other cellular components is only beginning to be elucidated. In this chapter, we provide an overview of the recent developments in our understanding of this class of RNAs from diverse perspectives including biogenesis, mechanism of their function, evolution of their clusters, and discuss the approaches currently available for the construction of post-transcriptional networks governed by them. We also present our current understanding on these post-transcriptional networks in the context other cellular networks. We finally argue that such developments would not only allow us to gain a deeper understanding of regulation at a level that has been under-appreciated over the past decades, but would also allow us to use the newly developed high-throughput approaches to interrogate the prevalence of these phenomena in different states, and thereby exploit the functions of these RNA molecules for therapeutic advantage in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2):281–297.

    PubMed  CAS  Google Scholar 

  2. Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev 2006; 16(2):203–208.

    PubMed  CAS  Google Scholar 

  3. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136(4):642–655.

    PubMed  CAS  Google Scholar 

  4. Valencia-Sanchez MA, Liu J, Hannon GJ et al. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006; 20(5):515–524.

    PubMed  CAS  Google Scholar 

  5. Cao X, Yeo G, Muotri AR et al. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006; 29:77–103.

    PubMed  CAS  Google Scholar 

  6. Plasterk RH. Micro RNAs in animal development. Cell 2006; 124(5):877–881.

    PubMed  CAS  Google Scholar 

  7. Wienholds E, Koudijs MJ, van Eeden FJ et al. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 2003; 35(3):217–218.

    PubMed  CAS  Google Scholar 

  8. Costinean S, Zanesi N, Pekarsky Y et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 2006; 103(18):7024–7029.

    PubMed  CAS  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5):843–854.

    PubMed  CAS  Google Scholar 

  10. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5):855–862.

    PubMed  CAS  Google Scholar 

  11. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294(5543):862–864.

    PubMed  CAS  Google Scholar 

  12. Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543):853–858.

    PubMed  CAS  Google Scholar 

  13. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpressionwith neighboring miRNAs and host genes. RNA 2005; 11(3):241–247.

    PubMed  CAS  Google Scholar 

  14. Rodriguez A, Griffiths-Jones S, Ashurst JL et al. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14(10A):1902–1910.

    PubMed  CAS  Google Scholar 

  15. Lu J, Shen Y, Wu Q et al. The birth and death of microRNA genes in Drosophila. Nat Genet 2008; 40(3): 351–355.

    PubMed  CAS  Google Scholar 

  16. Kim VN. MicroRNA biogenesis: coordinated cropping anddicing. Nat Rev Mol Cell Biol 2005; 6(5):376–385.

    PubMed  CAS  Google Scholar 

  17. Denli AM, Tops BB, Plasterk RH et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014):231–235.

    PubMed  CAS  Google Scholar 

  18. Gregory RI, Yan KP, Amuthan G et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014):235–240.

    PubMed  CAS  Google Scholar 

  19. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10(2): 185–191.

    PubMed  CAS  Google Scholar 

  20. Lund E, Guttinger S, Calado A et al. Nuclear export of microRNA precursors. Science 2004; 303(5654):95–98.

    PubMed  CAS  Google Scholar 

  21. Bernstein E, Kim SY, Carmell MA et al. Dicer is essential for mouse development. Nat Genet 2003; 35(3):215–217.

    PubMed  CAS  Google Scholar 

  22. Hutvagner G, McLachlan J, Pasquinelli AE et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531):834–838.

    PubMed  CAS  Google Scholar 

  23. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216(2):671–680.

    PubMed  CAS  Google Scholar 

  24. Humphreys DT, Westman BJ, Martin DI et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 2005; 102(47): 16961–16966.

    PubMed  CAS  Google Scholar 

  25. Pillai RS, Bhattacharyya SN, Artus CG et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005; 309(5740): 1573–1576.

    PubMed  CAS  Google Scholar 

  26. Jing Q, Huang S, Guth S et al. Involvement of micro RNA in AU-rich element-mediated mRNA instability. Cell 2005; 120(5):623–634.

    PubMed  CAS  Google Scholar 

  27. Lim LP, Lau NC, Garrett-Engele P et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027):769–773.

    PubMed  CAS  Google Scholar 

  28. Sood P, Krek A, Zavolan M et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 2006; 103(8):2746–2751.

    PubMed  CAS  Google Scholar 

  29. Bagga S, Bracht J, Hunter S et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122(4):553–563.

    PubMed  CAS  Google Scholar 

  30. Guo H, Ingolia NT, Weissman JS et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466(7308):835–840.

    PubMed  CAS  Google Scholar 

  31. Lim LP, Lau NC, Weinstein EG et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17(8): 991–1008.

    PubMed  CAS  Google Scholar 

  32. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39(Database issue):D152–D157.

    PubMed  Google Scholar 

  33. Lee CT, Risom T, Strauss WM. Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 2007; 26(4):209–218.

    PubMed  CAS  Google Scholar 

  34. Heimberg AM, Sempere LF, Moy VN et al. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 2008; 105(8):2946–2950.

    PubMed  CAS  Google Scholar 

  35. Prochnik SE, Rokhsar DS, Aboobaker AA. Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 2007; 217(1):73–77.

    PubMed  CAS  Google Scholar 

  36. Bentwich I, Avniel A, Karov Y et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37(7):766–770.

    PubMed  CAS  Google Scholar 

  37. Berezikov E, Thuemmler F, van Laake LW et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38(12): 1375–1377.

    PubMed  CAS  Google Scholar 

  38. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13(12):1097–1101.

    PubMed  CAS  Google Scholar 

  39. Tanzer A, Amemiya CT, Kim CB et al. Evolution of microRNAs located within Hox gene clusters. J Exp Zool B Mol Dev Evol 2005; 304(1):75–85.

    PubMed  Google Scholar 

  40. Tanzer A, Stadler PF. Evolution of microRNAs. Methods Mol Biol 2006; 342:335–350.

    PubMed  CAS  Google Scholar 

  41. Fahlgren N, Howell MD, Kasschau KD et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007; 2(2):e219.

    PubMed  Google Scholar 

  42. Li A, Mao L. Evolution of plant microRNA gene families. Cell Res 2007; 17(3):212–218.

    PubMed  CAS  Google Scholar 

  43. Lindow M, Krogh A. Computational evidence for hundreds of nonconserved plant microRNAs. BMC Genomics 2005; 6:119.

    PubMed  Google Scholar 

  44. Barakat A, Wall PK, Diloreto S et al. Conservation and divergence of microRNAs in Populus. BMC Genomics 2007; 8:481.

    PubMed  Google Scholar 

  45. Fattash I, Voss B, Reski R et al. Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 2007; 7:13.

    PubMed  Google Scholar 

  46. Berezikov E, Guryev V, van de Belt J et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120(1):21–24.

    PubMed  CAS  Google Scholar 

  47. Ohler U, Yekta S, Lim LP et al. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 2004; 10(9):1309–1322.

    PubMed  CAS  Google Scholar 

  48. Altuvia Y, Landgraf P, Lithwick G et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005; 33(8):2697–2706.

    PubMed  CAS  Google Scholar 

  49. Sewer A, Paul N, Landgraf P et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 2005; 6:267.

    PubMed  Google Scholar 

  50. Xue C, Li F, He T et al. Classification of real and pseudo micro RNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005; 6:310.

    PubMed  Google Scholar 

  51. Jiang P, Wu H, Wang W et al. MiPred: classification of real and pseudo microRNA precursors using random forest predictionmodel with combined features. Nucleic Acids Res 2007; 35(Web Server issue): W339–W344.

    PubMed  Google Scholar 

  52. Ding J, Zhou S, Guan J. MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics 2010; 11Suppl 11:S11.

    PubMed  Google Scholar 

  53. Friedlander MR, Chen W, Adamidi C et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008; 26(4):407–415.

    PubMed  Google Scholar 

  54. Hackenberg M, Sturm M, Langenberger D et al. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 2009; 37(Web Server issue): W68–W76.

    PubMed  CAS  Google Scholar 

  55. Yang JH, Li JH, Shao P et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 2011; 39(Database issue):D202–D209.

    PubMed  Google Scholar 

  56. Yang JH, Shao P, Zhou H et al. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 2010; 38(Database issue):D123–130.

    PubMed  CAS  Google Scholar 

  57. Papadopoulos GL, Reczko M, Simossis VA et al. The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 2009; 37(Database issue):D155–158.

    PubMed  CAS  Google Scholar 

  58. Rhoades MW, Reinhart BJ, Lim LP et al. Prediction of plant microRNA targets. Cell 2002; 110(4):513–520.

    PubMed  CAS  Google Scholar 

  59. Davis E, Caiment F, Tordoir X et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 2005; 15(8):743–749.

    PubMed  CAS  Google Scholar 

  60. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2):215–233.

    PubMed  CAS  Google Scholar 

  61. Baek D, Villen J, Shin C et al. The impact of microRNAs on protein output. Nature 2008; 455(7209):64–71.

    PubMed  CAS  Google Scholar 

  62. Selbach M, Schwanhausser B, Thierfelder N et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455(7209):58–63.

    PubMed  CAS  Google Scholar 

  63. Brennecke J, Stark A, Russell RB et al. Principles of microRNA-target recognition. PLoS Biol 2005; 3(3):e85.

    PubMed  Google Scholar 

  64. Krek A, Grun D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5):495–500.

    PubMed  CAS  Google Scholar 

  65. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1):15–20.

    PubMed  CAS  Google Scholar 

  66. Xie X, Lu J, Kulbokas EJ et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005; 434(7031):338–345.

    PubMed  CAS  Google Scholar 

  67. Cui Q, Yu Z, Purisima EO et al. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2006; 2:46.

    PubMed  Google Scholar 

  68. Ma’ayan A, Jenkins SL, Neves S et al. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 2005; 309(5737): 1078–1083.

    Google Scholar 

  69. Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125(2):301–313.

    PubMed  CAS  Google Scholar 

  70. Cui Q, Yu Z, Pan Y et al. MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 2007; 352(3):733–738.

    PubMed  CAS  Google Scholar 

  71. Shen-Orr SS, Milo R, Mangan S et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002; 31(1):64–68.

    PubMed  CAS  Google Scholar 

  72. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet 2007; 8(6):450–461.

    PubMed  CAS  Google Scholar 

  73. Janga SC, Collado-Vides J. Structure and evolution of gene regulatory networks in microbial genomes. Res Microbiol 2007; 158(10):787–794.

    PubMed  CAS  Google Scholar 

  74. Shalgi R, Lieber D, Oren M et al. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 2007; 3(7):e131.

    PubMed  Google Scholar 

  75. Zhou Y, Ferguson J, Chang JT et al. Inter-and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics 2007; 8:396.

    PubMed  Google Scholar 

  76. Wang J, Lu M, Qiu C et al. TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 2010; 38(Database issue):D119–D122.

    PubMed  CAS  Google Scholar 

  77. O’Donnell KA, Wentzel EA, Zeller KI et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435(7043):839–843.

    PubMed  Google Scholar 

  78. Liang H, Li WH. MicroRNA regulation of human protein protein interaction network. RNA 2007; 13(9):1402–1408.

    PubMed  CAS  Google Scholar 

  79. Balaji S, Babu MM, Iyer LM et al. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 2006; 360(1):213–227.

    PubMed  CAS  Google Scholar 

  80. Fontana L, Pelosi E, Greco P et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007; 9(7):775–787.

    PubMed  CAS  Google Scholar 

  81. Tay Y, Zhang J, Thomson AM et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455(7216):1124–1128.

    PubMed  CAS  Google Scholar 

  82. Dews M, Homayouni A, Yu D et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38(9):1060–1065.

    PubMed  CAS  Google Scholar 

  83. Ivanovska I, Cleary MA. Combinatorial microRNAs: working together to make a difference. Cell Cycle 2008; 7(20):3137–3142.

    PubMed  CAS  Google Scholar 

  84. Kim YK, Yu J, Han TS et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 2009; 37(5):1672–1681.

    PubMed  CAS  Google Scholar 

  85. Yuan X, Liu C, Yang P et al. Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol 2009; 3:65.

    PubMed  Google Scholar 

  86. Hafner M, Landthaler M, Burger L et al. PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 2010(41).

    Google Scholar 

  87. Khalil AM, Guttman M, Huarte M et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106(28):11667–11672.

    PubMed  CAS  Google Scholar 

  88. Alvarez-Saavedra M, Antoun G, Yanagiya A et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2010.

    Google Scholar 

  89. van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 2010; 123(Pt 11): 1825–1839.

    PubMed  Google Scholar 

  90. Laporte P, Merchan F, Amor BB et al. Riboregulators in plant development. Biochem Soc Trans 2007; 35(Pt 6): 1638–1642.

    PubMed  CAS  Google Scholar 

  91. Li Y, Wang F, Lee JA et al. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev 2006; 20(20):2793–2805.

    PubMed  CAS  Google Scholar 

  92. Cui Q, Yu Z, Purisima EO et al. MicroRNA regulation and interspecific variation of gene expression. Trends Genet 2007; 23(8):372–375.

    PubMed  CAS  Google Scholar 

  93. Ng KL, Mishra SK. De novo SVM classification of precursor micro RNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 2007; 23(11):1321–1330.

    PubMed  CAS  Google Scholar 

  94. Hertel J, Stadler PF. Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 2006; 22(14):e197–e202.

    PubMed  CAS  Google Scholar 

  95. Helvik SA, Snove O Jr., Saetrom P. Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics 2007; 23(2):142–149.

    PubMed  CAS  Google Scholar 

  96. Yousef M, Jung S, Kossenkov AV et al. Naive Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 2007; 23(22):2987–2992.

    PubMed  CAS  Google Scholar 

  97. Huang JC, Babak T, Corson TW et al. Using expression profiling data to identify human microRNA targets. Nat Methods 2007; 4(12):1045–1049.

    PubMed  CAS  Google Scholar 

  98. Enright AJ, John B, Gaul U et al. MicroRNA targets in Drosophila. Genome Biol 2003; 5(1):R1.

    PubMed  Google Scholar 

  99. Kiriakidou M, Nelson PT, Kouranov A et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004; 18(10): 1165–1178.

    PubMed  CAS  Google Scholar 

  100. Rehmsmeier M, Steffen P, Hochsmann M et al. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10(10):1507–1517.

    PubMed  CAS  Google Scholar 

  101. Grun D, Wang YL, Langenberger D et al. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 2005; 1(1):e13.

    PubMed  Google Scholar 

  102. Miranda KC, Huynh T, Tay Y et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6):1203–1217.

    PubMed  CAS  Google Scholar 

  103. Gaidatzis D, van Nimwegen E, Hausser J et al. Inference of miRN A targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 2007; 8:69.

    PubMed  Google Scholar 

  104. Kertesz M, Iovino N, Unnerstall U et al. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39(10): 1278–1284.

    PubMed  CAS  Google Scholar 

  105. Saetrom O, Snove O Jr., Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 2005; 11(7):995–1003.

    PubMed  CAS  Google Scholar 

  106. Hammell M, Long D, Zhang L et al. mirWIP: microRNA target prediction based on micro RNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 2008; 5(9):813–819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janga, S.C., Vallabhaneni, S. (2011). MicroRNAs as Post-Transcriptional Machines and their Interplay with Cellular Networks. In: Collins, L.J. (eds) RNA Infrastructure and Networks. Advances in Experimental Medicine and Biology, vol 722. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0332-6_4

Download citation

Publish with us

Policies and ethics