Skip to main content

The Role of Soil Organic Matter in Trace Element Bioavailability and Toxicity

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Soil organic matter (SOM) is a highly important pedospheric variable for agricultural practice and ecological functions. A decline in SOM content during the last two centuries has affected agricultural areas in many countries. Among multifunctional roles of SOM, one of the most crucial is that, due to its huge reactive interfaces, SOM strongly competes with other soil matrix constitutes/ligands in trace element (TE) adsorption/chemosorption. Thus, declining SOM content may cause soil degradation, particularly from the standpoint of disturbing soil’s capacity to retain potentially toxic TEs and therefore increase a risk of their migration in the environment. Using geochemical modelling with realistic natural conditions, we highlighted the importance and complexity of SOM in the rhizosphere interactions with some of the widespread and potentially toxic TEs. It was shown that biogeochemistry of Cd, Zn and Cu may vary distinctly in relatively similar environmental conditions (e.g. narrow pH range, same SOM content and temperature), thus influencing their mobility and bioavailability, i.e. toxicity in the soil–plant–animal continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • ANZFA (1997) Australia New Zealand Food Agency. www.foodstandards.gov.au

  • Apul DS, Diaz ME, Gustafsson JP, Hundal LS (2010) Environ Eng Sci 27:743–755

    Article  CAS  Google Scholar 

  • Bandiera M, Moscaa G, Vamerali T (2009) Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalination 246:78–91

    Article  CAS  Google Scholar 

  • Baziramakenga R, Simard RR, Leroux GD (1995) Determination of organic acids in soil extracts by ion chromatography. Soil Biol Biochem 27:349–356

    Article  CAS  Google Scholar 

  • Blume HP, Leinweber P (2004) Plaggen soils: Landscape history, properties, and classification. J Plant Nutr Soil Sci 167:319–327

    Article  CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic-acids on the solubilization of phosphates. Biol Fertil Soils 18: 311–319

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Duraisamy P, Mani A (2003) Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil 256:231–241

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytologist 173:677–702

    Article  PubMed  CAS  Google Scholar 

  • Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comparison of measured and modeled copper binding by natural organic matter in freshwaters. Comp Biochem Physiol C133:37–49

    Google Scholar 

  • Byrne KA, Chonjicki B, Christensen TR, Drosler M, Freibauer A, Friborg T, Frolking S, Lindroth A, Mailhammer J, Malmer N, Selin P, Turunen J, Valentini R, Zetterberg L (2004) EU peatlands: current carbon stocks and trace gas fluxes. In: Christensen TR, Friborg T (eds) Carbo-Europe Report

    Google Scholar 

  • Cerri CC, Bernoux M, Cerri CEP, Feller C (2004) Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use Manag 20: 248–254

    Article  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen B-T (2011) Low-molecular-weight organic acids exuded by Millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Epstein E (2003) Land application of sewage sludge and biosolids. Lewis, Boca Raton

    Google Scholar 

  • Essington ME (2004) Soil and water chemistry: an integrative approach. CRC, Boca Raton, FL

    Google Scholar 

  • European Commission (2006) Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Thematic Strategy for Soil Protection, COM (2006) 231

    Google Scholar 

  • Evangelou MWH, Dagan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213

    Article  PubMed  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaefferet A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Bipp H-P, Riemschnider P, Leidmann P, Bieniek D, Kettrup A (1998) Utilization of biomass residues for the remediation of metal-polluted soils. Environ Sci Technol 32:2154–2161

    Article  CAS  Google Scholar 

  • Glatzel S, Kalbitz K, Dalva M, Moore T (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113:397–411

    Article  CAS  Google Scholar 

  • Gondar D, Bernal MP (2009) Copper binding by olive mill solid waste and its organic matter fractions. Geoderma 149:272–279

    Article  CAS  Google Scholar 

  • Grierson PF (1992) Organic-acids in the rhizosphere of Banksia integrifolia. L. Plant Soil 144:259–265

    Article  CAS  Google Scholar 

  • Gustafsson JP (2006) Arsenate adsorption to soils: Modelling the competition from humic substances. Geoderma 136:320–330

    Article  CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from rootmediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37:501–510

    Article  CAS  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil 283:155–162

    Article  CAS  Google Scholar 

  • Holden J, Shotbolt L, Bonn A, Burt TP, Chapman PJ, Dougill AJ, Fraser EDG, Hubacek K, Irvine B, Kirkby MJ, Reed MS, Prell C, Stagl S, Stringer LC, Turner A, Worrall F (2007) Environmental change in moorland landscapes. Earth Sci Rev 82:75–100

    Article  Google Scholar 

  • IPCC (2000) Land use, land-use change and forestry. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of trace ­elements – an environmental issue. Geoderma 122: 143–149

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291

    Article  CAS  Google Scholar 

  • Khoshgoftar AH, Shariatmadari H, Karimian N, Kalbasi M, van der Zee SEATM, Parker DR (2004) Salinity and Zn application effects on phytoavailability of Cd and Zn. Soil Sci Soc Am J 68:1885–1889

    Article  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Shariatmadari H, Karimian N, Kalbasi M, van der Zee SEATM (2006) Cadmium and zinc in saline soil solutions and their concentrations in wheat. Soil Sci Soc Am J 70:582–589

    Article  CAS  Google Scholar 

  • Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surface A151:147–166

    Google Scholar 

  • Lado LL, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148: 189–199

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan

    Google Scholar 

  • Liljeroth E, Kuikman P, Van Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant Soil 161: 233–240

    Article  Google Scholar 

  • Lorenz SE, Hamon RE, Holm PE, Domingues HC, Sequeira EM, Christensen TH, McGrath SP (1997) Cadmium and zinc in plants and soil solutions from contaminated soils. Plant Soil 189:21–31

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Matthews E (1997) Global litter production, pools, and turnover times: estimates from measurement data and regression models. J Geophys Res 102:18771–18800

    Google Scholar 

  • McLaughlin MJ, Andrews SJ, Smart MK, Smolders E (1998a) Effects of sulfate on cadmium uptake by Swiss chard. I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202: 211–216

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Lambrechts RM, SmoldersE SMK (1998b) Effects of sulfate on cadmium uptake by Swiss chard: II. Effects due to sulfate addition to soil. Plant Soil 202:217–222

    Article  CAS  Google Scholar 

  • Neumann G, Romheld V (2000) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, NY, pp 41–93

    Google Scholar 

  • Neunhauserer C, Berreck M, Insam H (2001) Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut 128:85–96

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability – the impact of natural organic acids commonly exuded from roots. Plant Soil 230:107–113

    Article  CAS  Google Scholar 

  • Ondrasek G (2008) Salt stress and rhizosphere contamination by cadmium: phytoaccumulation of nutrients and toxic metal. PhD Thesis, University of Zagreb, Croatia

    Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Savic R. Salinity decreases dissolved organic carbon in the rhizosphere and increases trace elements phytoaccumulation (submitted)

    Google Scholar 

  • Ondrasek G, Romic D, Rengel Z, Romic M, Zovko M (2009a) Cadmium accumulation by muskmelon under salt stress in contaminated organic soil. Sci Total Environ 407:2175–2182

    Article  PubMed  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009b) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium-contaminated environment. Cereal Res Commun 37:9–12

    CAS  Google Scholar 

  • Ondrasek G, Rengel Z, Romic D, Savic R (2010) Environmental salinisation processes in agro-ecosystem of Neretva River estuary. Novenytermeles 59:223–226

    Google Scholar 

  • Ondrasek G, Rengel Z, Veres S. Soil salinisation and salt stress in crop production. In: Shanker AK, Venkateswarlu B (eds) Abiotic Stress in Plants - Mechanisms and Adaptations. ISBN 978-953-307-394–1. InTech (in press)

    Google Scholar 

  • Otto WH, Carper WR, Larive CK (2001) Measurement of cadmium(II) and calcium(II) complexation by fulvic acids using Cd-113 NMR. Environ Sci Technol 35: 1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Rengel Z (1995) Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn I. During vegetative growth. J Exp Bot 46:833–839

    Article  CAS  Google Scholar 

  • Peichl M, Moore TR, Arain MA, Dalva M, Brodkey D, McLaren J (2007) Concentrations and fluxes of ­dissolved organic carbon in an age-sequence of white pine forests in Southern Ontario, Canada. Biogeochemistry 86:1–17

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. Plant Soil 245:59–70

    Article  CAS  Google Scholar 

  • Rengel Z (2004) Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17:669–689

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z (2007) Cycling of micronutrients in terrestrial ecosystem. In: Marschner P, Rengel Z (eds) Nutrient cycling in terestrial ecosystem. Springer, Berlin, Germany, pp 93–113

    Chapter  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of feld crops. Field Crops Res 60:27–40

    Article  Google Scholar 

  • Romic D, Romic M, Rengel Z, Zovko M, Bakic H, Ondrasek G. Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region (submitted)

    Google Scholar 

  • Sachse A, Henrion R, Gelbrecht J, Steinberg CEW (2005) Classification of dissolved organic carbon (DOC) in river systems: Influence of catchment characteristics and autochthonous processes. Org Geochem 36:923–935

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Elsevier, Amsterdam, pp 1–58

    Chapter  Google Scholar 

  • Shuman LM, Dudka S, Das K (2002) Cadmium forms and plant availability in compost-amended soil. Commun Soil Sci Plant Anal 33:737–748

    Article  CAS  Google Scholar 

  • Smith MB, March J (2007) Advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. Wiley, New York

    Google Scholar 

  • Smolders E, McLaughlin MJ (1996) Effect of Cl and Cd uptake by Swiss chard in nutrient solution. Plant Soil 179:57–64

    Article  CAS  Google Scholar 

  • Soussana JF, Loiseau P, Viuchard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Article  Google Scholar 

  • Strak M (2008) Peatlands and climate change. International Peat Society, Vapaudenkatu 12, 40100 Jyväskylä, Finland. ISBN 978-952-99401-1-0

    Google Scholar 

  • Tan KH (2003) Humic matter in soil and the environment, principles and controversies. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  • Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct ­measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123: 987–996

    Article  PubMed  CAS  Google Scholar 

  • Tipping E (2005) Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH. Geoderma 127:293–304

    Article  CAS  Google Scholar 

  • Van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundstrom US (2005) The carbon we do not see - the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Article  Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile A-R, Jones RJA, Montanarella L, Olazabal C, Selvaradjou S-K (2004) Reports of the technical working groups established under the thematic strategy for soil protection. EUR 21319 EN/3. Office for Official Publications of the European Communities, Luxembourg, p 872

    Google Scholar 

  • Weggler K, McLaughlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. J Envirom Qual 33: 496–504

    Article  CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Van Riemsdijk WH (2001) Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol 35:4436–4443

    Article  PubMed  CAS  Google Scholar 

  • Woods WI, Falcao NPS, Teixeira WG (2006) Biochar ­trials aim to enrich soil for smallholders. Nature 443:144

    Article  PubMed  CAS  Google Scholar 

  • Yallop AR, Clutterbuck B (2009) Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity. Sci Total Environ 407:3803–3813

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Anderson G (2002) Environmental applications of geochemical modeling. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Croatian Science Foundation (Con. O-3510-2010) and Croatian Ministry of Science, Education and Sports (Pr. No: 0178039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrijel Ondrasek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ondrasek, G., Rengel, Z. (2012). The Role of Soil Organic Matter in Trace Element Bioavailability and Toxicity. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_22

Download citation

Publish with us

Policies and ethics