Skip to main content

Numerical Bifurcation Analysis

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

Continuation and Discretization of Solutions

Normal Forms and the Center Manifold

Continuation and Detection of Bifurcations

Branch Switching

Connecting Orbits

Software Environments

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dynamical system:

A rule for time evolution on a state space. The term system will be used interchangeably. Here a system is a family given by an ordinary differential equation (ODE) depending on parameters.

Equilibrium:

A constant solution of the system, for given parameter values.

Limit cycle:

An isolated periodic solution of the system, for given parameter values.

Bifurcation:

A qualitative change in the dynamics of a dynamical system produced by changing its parameters. Bifurcation points are the critical parameter combinations at which this happens for arbitrarily small parameter perturbations.

Normal form:

A simplified model system for the analysis of a certain type of bifurcation.

Codimension:

The minimal number of parameters needed to perturb a family of systems in a generic manner.

Defining system:

A set of suitable equations so that the zero set corresponds to a bifurcation of a certain type or to a particular solution of the system. Also called defining function or equation.

Continuation:

A numerical method suited for tracing one‐dimensional manifolds, curves (here called branches) of solutions for a defining system while one or more parameters are varied.

Test function:

A function designed to have a regular zero at a bifurcation. During continuation a test function can be monitored to detect bifurcations.

Branch switching:

Several branches of different codimension can emanate from a bifurcation point. Switching from the computation of one branch to an other requires appropriate procedures.

Bibliography

Primary Literature

  1. Allgower EL, Georg K (2000) Numerical Continuation Methods: An Introduction. Springer, Berlin

    Google Scholar 

  2. Arnold VI (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Ascher UC, Mattheij RMM, Russell B (1995) Numerical Solution of Boundary Value Problems for Ordinary Differenital Equations. SIAM, Philadelphia

    Book  Google Scholar 

  4. Back A, Guckenheimer J, Myers M, Wicklin F, Worfolk P (1992) DsTool: Computer assisted exploration of dynamical systems. Notices Amer Math Soc 39:303–309

    Google Scholar 

  5. Barton DAW, Krauskopf B, Wilson RE (2007) Homoclinic bifurcations in a neutral delay model of a transmission line oscillator. Nonlinearity 20:809–829

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyn WJ (1990) The numerical computation of connecting orbits in dynamical systems. IMA J Numer Anal 10:379–405

    Article  MathSciNet  MATH  Google Scholar 

  7. Beyn WJ (1991) Numerical methods for dynamical systems. In: Light W (ed) Advances in numerical analysis, Vol. I (Lancaster, 1990). Clarendon, Oxford, pp 175–236

    Google Scholar 

  8. Beyn WJ (1994) Numerical analysis of homoclinic orbits emanating from a Takens–Bogdanov point. IMA J Numer Anal 14:381–410

    Article  MathSciNet  MATH  Google Scholar 

  9. Beyn WJ, Champneys A, Doedel EJ, Govaerts W, Kuznetsov YA, Sandstede B (2002) Numerical continuation, and computation of normal forms. In: Fiedler B (ed) Handbook of Dynamical Systems, vol 2. Elsevier Science, Amsterdam, pp 149–219

    Google Scholar 

  10. Beyn WJ, Kleinkauf JM (1997) The numerical computation of homoclinic orbits for maps. Siam J Numer Anal 34:1207–1236

    Article  MathSciNet  MATH  Google Scholar 

  11. Carr J (1981) Applications of centre manifold theory. Springer, New York

    Book  MATH  Google Scholar 

  12. Champneys AR, Kuznetsov YA, Sandstede B (1996) A numerical toolbox for homoclinic bifurcation analysis. Int J Bif Chaos 6:867–887

    Article  MathSciNet  MATH  Google Scholar 

  13. Clewley R, Sherwood E, LaMar D, Guckenheimer J (2005) PyDSTool, available at http://sourceforge.net/projects/pydstool. Accessed 09 Sept 2008

  14. Coullet PH, Spiegel EA (1983) Amplitude equations for systems with competing instabilities. SIAM J Appl Math 43:776–821

    Article  MathSciNet  MATH  Google Scholar 

  15. de Boor C, Swartz B (1973) Collocation at Gaussian points. SIAM J Num Anal 10:582–606

    Article  MATH  Google Scholar 

  16. Dercole F (2008) Bpcont: An auto driver for the continuation of branch points of algebraic and boundary‐value problems. SIAM J Sci Comp 30:2405–2426

    Article  MathSciNet  MATH  Google Scholar 

  17. Deuflhard P, Bornemann F (2002) Scientific Computing With Ordinary Differential Equations. In: Marsden JE, Sirovich L, Antman S (eds) Texts in applied mathematics, vol 42. Springer, New York

    Google Scholar 

  18. Deuflhard P, Fiedler B, Kunkel P (1987) Efficient numerical pathfollowing beyond critical points. SIAM J Num Anal 24:912–927

    Article  MathSciNet  MATH  Google Scholar 

  19. Dhooge A, Govaerts W, Kuznetsov YA (2003) Matcont: A Matlab package for numerical bifurcation analysis of ODE's. ACM TOMS 29, pp 141–164. http://sourceforge.net/projects/matcont. Accessed 9 Sep 2008

  20. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B (2008) New features of the software Matcont for bifurcation analysis of dynamical systems. Math Comp Mod Dyn Syst 14:147–175

    Google Scholar 

  21. Doedel EJ (2007) AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, User's Guide. http://cmvl.cs.concordia.ca/auto. Accessed 9 Sep 2008

  22. Doedel EJ (2007) Lecture notes on numerical analysis of nonlinear equations. In: Krauskopf B, Osinga HM, Galan-Vioque J (eds) Numerical continuation methods for dynamical systems: Path following and boundary value problems. Springer-Canopus, Dordrecht, pp 1–49

    Chapter  Google Scholar 

  23. Doedel EJ, Govaerts W, Kuznetsov YA (2003) Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J Numer Anal 41:401–435

    Article  MathSciNet  MATH  Google Scholar 

  24. Doedel EJ, Kernevez JP (1986) AUTO, Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Applied Mathematics, California Institute of Technology, Pasadena

    Google Scholar 

  25. Doedel EJ, Romanov VA, Paffenroth RC, Keller HB, Dichmann DJ, Vioque GJ, Vanderbauwhede A (2007) Elemental periodic orbits associated with the liberation points in the circular restricted 3-body problem. Int J Bif Chaos 17:2625–2677

    Article  MATH  Google Scholar 

  26. Doedel EJ, Kooi BW, Kuznetsov YA, van Voorn GAK (2008) Continuation of connecting orbits in 3D-ODEs: (I) Point-to-cycle connections. Int J Bif Chaos 18:1889–1903

    Article  MATH  Google Scholar 

  27. Doedel EJ, Kooi BW, Kuznetsov YA, van Voorn GAK (2008) Continuation of connecting orbits in 3D-ODEs: (II) Cycle-to-cycle connections. arXiv.org:0804.0179. Accessed 9 Sep 2008

    Google Scholar 

  28. Doedel EJ, Kuznetsov YA, Govaerts W, Dhooge A (2005) Numerical continuation of branch points of equilibria and periodic orbits. Int Bif J Chaos 15:841–860

    Article  MathSciNet  MATH  Google Scholar 

  29. Elphick C, Tirapegui E, Brachet M, Coullet P, Iooss G (1987) A simple global characterization for normal forms of singular vector fields. Phys D 32:95–127

    Article  MathSciNet  Google Scholar 

  30. Engelborghs K, Lust K, Roose D (1999) Direct computation of period doubling bifurcation points of large-scale systems of ODEs using a Newton-Picard method. IMA J Numer Anal 19:525–547

    Article  MathSciNet  MATH  Google Scholar 

  31. Engelborghs K, Luzyanina T, Roose D (2002) Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans Math Softw 28:1–21

    Article  MathSciNet  MATH  Google Scholar 

  32. Ermentrout B (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  33. Friedman M, Govaerts W, Kuznetsov YA, Sautois B (2005) Continuation of homoclinic orbits in MATLAB. In: Sunderam VS, van Albada GD, Sloot PMA, Dongarra J (eds) Proceedings ICCS 2005, Atlanta, Part I, Springer Lecture Notes in Computer Science Vol. 3514. Springer, Berlin, pp 263–270

    Google Scholar 

  34. Fuller AT (1968) Conditions for a matrix to have only characteristic roots with negative real parts. J Math Anal Appl 23:71–98

    Article  MathSciNet  MATH  Google Scholar 

  35. Gaspard P (1993) Local birth of homoclinic chaos. Phys D 62:94–122

    Article  MathSciNet  MATH  Google Scholar 

  36. Govaerts W, Guckenheimer J, Khibnik A (1997) Defining functions for multiple Hopf bifurcations. SIAM J Numer Anal 34:1269–1288

    Article  MathSciNet  MATH  Google Scholar 

  37. Govaerts W, Khoshsiar Ghaziani R, Kuznetsov YA, Meijer HGE (2007) Numerical methods for two‐parameter local bifurcation analysis of maps. SIAM J Sci Comput 29:2644–2667

    Article  MathSciNet  MATH  Google Scholar 

  38. Govaerts W, Kuznetsov YA (2007) Numerical continuation tools. In: Krauskopf B, Osinga HM, Galen-Vioque J (eds) Numerical continuation methods for dynamical systems: Path following and boundary value problems. Springer-Canopus, Dordrecht, pp 51–75

    Chapter  Google Scholar 

  39. Govaerts W, Kuznetsov YA, Dhooge A (2005) Numerical continuation of bifurcations of limit cycles in matlab. SIAM J Sci Comp 27:231–252

    Article  MathSciNet  MATH  Google Scholar 

  40. Govaerts W, Kuznetsov YA, Sijnave B (1999) Bifurcations of maps in the software package content. In: Ganzha VG, Mayr EW, Vorozhtsov EV (eds) Computer algebra in scientific computing–CASC'99 (Munich). Springer, Berlin, pp 191–206

    Google Scholar 

  41. Govaerts W, Pryce JD (1993) Mixed block elimination for linear systems with wider borders. IMA J Num Anal 13:161–180

    Article  MathSciNet  MATH  Google Scholar 

  42. Govaerts WJF (2000) Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  43. Guckenheimer J (2002) Numerical analysis of dynamical systems. In: Fiedler B (ed) Handbook of dynamical systems, Vol. 2. Elsevier Science, North-Holland, pp 346–390

    Google Scholar 

  44. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York

    MATH  Google Scholar 

  45. Guckenheimer J, Myers M, Sturmfels B (1997) Computing Hopf bifurcations I. SIAM J Numer Anal 34:1–21

    Article  MathSciNet  MATH  Google Scholar 

  46. Henderson Me (2007) Higher‐dimensional continuation. In: Krauskopf B, Osinga HM, Galen-Vioque J (eds) Numerical continuation methods for dynamical systems: Path following and boundary value problems. Springer-Canopus, Dordrecht, pp 77–115

    Google Scholar 

  47. Iooss G (1988) Global characterization of the normal form for a vector field near a closed orbit. J Diff Eqs 76:47–76

    Article  MathSciNet  MATH  Google Scholar 

  48. Iooss G, Adelmeyer M (1992) Topics in Bifurcation Theory and Applications. World Scientific, Singapore

    MATH  Google Scholar 

  49. Jorba A (2001) Numerical computation of the normal behaviour of invariant curves of n‑dimensional maps. Nonlinearity 14:943–976

    Article  MathSciNet  MATH  Google Scholar 

  50. Keller HB (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz PH (ed) Applications of bifurcation theory. Proc Advanced Sem, Univ Wisconsin, Madison, (1976), Publ Math Res Center, No. 38. Academic Press, New York pp 359–384

    Google Scholar 

  51. Khibnik AI (1990) LINBLF: A program for continuation and bifurcation analysis of equilibria up to codimension three. In: Roose D, de Dier D, Spence A (eds) Continuation and bifurcations: numerical techniques and applications. Leuven, (1989), NATO Adv Sci Inst Ser C Math Phys Sci, vol 313. Kluwer, Dordrecht, pp 283–296

    Chapter  Google Scholar 

  52. Krauskopf B, Osinga HM, Doedel EJ, Henderson ME, Guckenheimer J, Vladimirsky A, Dellnitz M, Junge O (2005) A survey of methods for computing (un)stable manifolds of vector fields. Int J Bif Chaos 15(3):763–791

    Article  MathSciNet  MATH  Google Scholar 

  53. Krauskopf B, Osinga HM, Galan-Vioque J (2007) Numerical Continuation methods for dynamical systems. Springer-Canopus, Dordrecht

    Book  MATH  Google Scholar 

  54. Krauskopf B, Riess T (2008) A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity 21:1655–1690

    Article  MathSciNet  MATH  Google Scholar 

  55. Kuznetsov YA (1999) Numerical normalization techniques for all codim 2 bifurcations of equilibria in ODE's. SIAM J Numer Anal 36:1104–1124

    Article  MathSciNet  MATH  Google Scholar 

  56. Kuznetsov YA (2004) Elements of Applied Bifurcation Theory, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  57. Kuznetsov YA, Govaerts W, Doedel EJ, Dhooge (2005) Numerical periodic normalization for codim 1 bifurcations of limit cycles. SIAM J Numer Anal 43:1407–1435

    Article  MathSciNet  MATH  Google Scholar 

  58. Kuznetsov YA, Levitin VV (1995) Content: A multiplatform environment for analyzing dynamical systems. ftp://ftp.cwi.nl/pub/CONTENT/. Accessed 9 Sep 2008

  59. Kuznetsov YA, Meijer HGE (2005) Numerical normal forms for codim 2 bifurcations of maps with at most two critical eigenvalues. SIAM J Sci Comput 26:1932–1954

    Article  MathSciNet  MATH  Google Scholar 

  60. Kuznetsov YA, Meijer HGE (2006) Remarks on interacting Neimark–Sacker bifurcations. J Diff Eqs Appl 12:1009–1035

    Article  MathSciNet  MATH  Google Scholar 

  61. Kuznetsov YA, Meijer HGE, Govaerts W, Sautois B (2008) Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs. Physica D 237:3061–3068

    Article  MathSciNet  MATH  Google Scholar 

  62. Lust K, Roose D, Spence A, Champneys AR (1998) An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J Sci Comput 19:1188–1209

    Article  MathSciNet  MATH  Google Scholar 

  63. Mei Z (1989) A numerical approximation for the simple bifurcation problems. Numer Func Anal Opt 10:383–400

    Article  MATH  Google Scholar 

  64. Mei Z (2000) Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, Berlin

    Book  MATH  Google Scholar 

  65. Moore G (1980) The numerical treatment of nontrivial bifurcation points. Numer Func Anal Opt 2:441–472

    Article  MATH  Google Scholar 

  66. Oldeman BE, Champneys AR, Krauskopf B (2003) Homoclinic branch switching: a numerical implementation of Lin's method. Int J Bif Chaos 13:2977–2999

    Article  MathSciNet  MATH  Google Scholar 

  67. Roose D, Hlavaçek V (1985) A direct method for the computation of Hopf bifurcation points. SIAM J Appl Math 45:879–894

    Google Scholar 

  68. Russell RD, Christiansen J (1978) Adaptive mesh selection strategies for solving boundary value problems. SIAM J Num Anal 15:59–80

    Article  MathSciNet  MATH  Google Scholar 

  69. Salinger AG, Burroughs EA, Pawlowski RP, Phipps ET, Romero LA (2005) Bifurcation tracking algorithms and software for large scale applications. Int J Bif Chaos 15:1015–1032

    Article  MathSciNet  MATH  Google Scholar 

  70. Schilder F, Osinga HM, Vogt W (2005) Continuation of quasiperiodic invariant tori. SIAM J Appl Dyn Syst 4:459–488

    Article  MathSciNet  MATH  Google Scholar 

  71. Schilder F, Vogt W, Schreiber S, Osinga HM (2006) Fourier methods for quasi‐periodic oscillations. Int J Num Meth Eng 67:629–671

    Article  MathSciNet  MATH  Google Scholar 

  72. Shoshitaishvili AN (1975) The bifurcation of the topological type of the singular points of vector fields that depend on parameters. Trudy Sem Petrovsk, (Vyp. 1):279–309

    Google Scholar 

  73. Stephanos C (1900) Sur une extension du calcul des substitutions linéaires. J Math Pures Appl 6:73–128

    Google Scholar 

  74. Szalai R, Stépán G, Hogan SJ (2006) Continuation of bifurcations in periodic delay‐differential equations using characteristic matrices. SIAM J Sci Comput 28:1301–1317

    Google Scholar 

  75. van Strien SJ (1979) Center manifolds are not C\({^{\infty}}\). Math Zeitschrift 166:143–145

    Article  MATH  Google Scholar 

Books and Reviews

  1. Devaney RL (2003) An introduction to chaotic dynamical systems. Westview Press, Boulder

    MATH  Google Scholar 

  2. Doedel EJ, Keller HB, Kernevez JP (1991) Numerical Analysis and Control of Bifurcation Problems (I): Bifurcation in Finite Dimensions. Int J Bif Chaos 1:493–520

    Article  MathSciNet  MATH  Google Scholar 

  3. Doedel EJ, Keller HB, Kernevez JP (1991) Numerical Analysis and Control of Bifurcation Problems (II): Bifurcation in Infinite Dimensions. Int J Bif Chaos 1:745–772

    Article  MathSciNet  MATH  Google Scholar 

  4. Hirsch MW, Smale S, Devaney RL (2004) Differential equations, dynamical systems, and an introduction to chaos, 2nd edn. Pure and Applied Mathematics, vol 60 Elsevier/Academic Press, Amsterdam

    Google Scholar 

  5. Murdock J (2003) Normal Forms and Unfoldings for Local Dynamical Systems. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Meijer, H., Dercole, F., Oldeman, B. (2012). Numerical Bifurcation Analysis. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_71

Download citation

Publish with us

Policies and ethics