Skip to main content

Cytochrome c Oxidase and Its Role in Neurodegeneration and Neuroprotection

  • Chapter
  • First Online:
Mitochondrial Oxidative Phosphorylation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 748))

Abstract

A hallmark of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus-­encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and ­survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham CR, Marshall DC, Tibbles HE, Otto K, Long HJ, Billingslea AM, Hastey R, Johnson R, Fine RE, Smith SJ, Simons ER, Davies TA (1999) Platelets and DAMI megakaryocytes possess beta-secretase-like activity. J Lab Clin Med 133:507–515

    PubMed  CAS  Google Scholar 

  • Allen LA, Zhao XJ, Caughey W, Poyton RO (1995) Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of cytochrome c. J Biol Chem 270:110–118

    PubMed  CAS  Google Scholar 

  • Antonini G, Malatesta F, Sarti P, Vallone B, Brunori M (1988) ATP-induced spectral changes in cytochrome c oxidase. A kinetic investigation. Biochem J 256:835–840

    PubMed  CAS  Google Scholar 

  • Araujo GW, Beyer C, Arnold S (2008) Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes. J Neuroendocrinol 20:930–941

    PubMed  CAS  Google Scholar 

  • Arnold S (2012) The power of life – cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 12:46–56

    PubMed  CAS  Google Scholar 

  • Arnold S, Beyer C (2009) Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 110:1–11

    PubMed  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1997) Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome c oxidase. Eur J Biochem 249:350–354

    PubMed  CAS  Google Scholar 

  • Arnold S, Kadenbach B (1999) The intramitochondrial ATP/ADP ratio controls cytochrome c oxidase activity allosterically. FEBS Lett 443:105–108

    PubMed  CAS  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    PubMed  CAS  Google Scholar 

  • Arnold S, de Araújo GW, Beyer C (2008) Gender-specific regulation of mitochondrial fusion and fission gene transcription and viability of cortical astrocytes by steroid hormones. J Mol Endocrinol 41:289–300

    PubMed  CAS  Google Scholar 

  • Arnold S, Victor MB, Beyer C (2012) Estrogen and the regulation of mitochondrial structure and function in the brain. J Steroid Biochem Mol Biol (in press)

    Google Scholar 

  • Atamna H (2006) Heme binding to amyloid-β peptide: mechanistic role in Alzheimer’s disease. J Alzheimers Dis 10:255–266

    PubMed  Google Scholar 

  • Atamna H (2009) Amino acids variations in amyloid-beta peptides, mitochondrial dysfunction, and new therapies for Alzheimer’s disease. J Bioenerg Biomembr 41:457–464

    PubMed  CAS  Google Scholar 

  • Atamna H, Frey WH II (2004) A role for heme in Alzheimer’s disease: heme binds amyloid β and has altered metabolism. Proc Natl Acad Sci USA 101:11153–11158

    PubMed  CAS  Google Scholar 

  • Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G, Marra E, Calissano P, Passarella S (2008) A peptide containing residues 26–44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim Biophys Acta 1777:1289–1300

    PubMed  CAS  Google Scholar 

  • Ayala A, Venero JL, Cano J, Machado A (2007) Mitochondrial toxins and neurodegenerative diseases. Front Biosci 12:986–1007

    PubMed  CAS  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay B, Li G, Yin H, Kuret J (2007) Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem 282:16454–16464

    PubMed  CAS  Google Scholar 

  • Banerjee R, Starkov AA, Beal MF, Thomas B (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792:651–663

    PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    PubMed  CAS  Google Scholar 

  • Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    PubMed  CAS  Google Scholar 

  • Beauchemin AMJ, Gottlieb B, Beitel LK, Elhaji YA, Pinsky L, Trifiro MA (2001) Cytochrome c oxidase subunit Vb interacts with human androgen receptor: a potential mechanism for neurotoxicity in spinobulbar muscular atrophy. Brain Res Bull 56:285–297

    PubMed  CAS  Google Scholar 

  • Beauvoit B, Rigoulet M (2001) Regulation of cytochrome c oxidase by adenylic nucleotides. Is oxidative phosphorylation feedback regulated by its end-products? IUBMB Life 52:143–152

    PubMed  CAS  Google Scholar 

  • Benzi G, Pastoris O, Marzatico F, Villa RF, Dagani F, Curti D (1992) The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging 13:361–368

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455

    PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Giorgetti B, Solazzi M, Balietti M, Casoli T, Di SG (2004) Cytochrome oxidase activity in hippocampal synaptic mitochondria during aging: a quantitative cytochemical investigation. Ann N Y Acad Sci 1019:33–36

    PubMed  CAS  Google Scholar 

  • Bettini E, Maggi A (1992) Estrogen induction of cytochrome c oxidase subunit III in rat hippocampus. J Neurochem 58:1923–1929

    PubMed  CAS  Google Scholar 

  • Bisson R, Schiavo G, Montecucco C (1987) ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site. J Biol Chem 262:5992–5998

    PubMed  CAS  Google Scholar 

  • Bolanos JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972

    PubMed  CAS  Google Scholar 

  • Bonilla E, Tanji K, Hirano M, Vu TH, DiMauro S, Schon EA (1999) Mitochondrial involvement in Alzheimer’s disease. Biochim Biophys Acta 1410:171–182

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Koutouzis TK, Randall TS, Freeman TB, Cahill DW, Sanberg PR (1995) Systemic 3-nitropropionic acid: behavioural deficits and striatal damage in adult rats. Brain Res Bull 36:549–556

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci Biobehav Rev 21:289–293

    PubMed  CAS  Google Scholar 

  • Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G (2002) Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging 23:371–376

    PubMed  CAS  Google Scholar 

  • Boutin AT, Johnson RS (2007) Waiting to inhale: HIF-1 modulates aerobic respiration. Cell 129:29–30

    PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Boveris A, Costa LE, Cadenas E (1999) The mitochondrial production of oxygen radicals and cellular aging. In: Cadenas E, Packer L (eds) Understanding the process of aging: the roles of mitochondria, free radicals, and antioxidants, vol 8, Antioxidants in health and disease. Dekker, New York, pp 1–20

    Google Scholar 

  • Boyalla SS, Victor MB, Roemgens A, Beyer C, Arnold S (2011) Gender- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability. J Neurosci Res 89:2068–2082

    Google Scholar 

  • Brennan WA, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44:1948–1950

    PubMed  CAS  Google Scholar 

  • Brinton RD (2008) The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci 31:529–537

    PubMed  CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    PubMed  CAS  Google Scholar 

  • Burke PV, Poyton RO (1998) Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. J Exp Biol 201:1177–1195

    PubMed  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257

    PubMed  CAS  Google Scholar 

  • Canevari L, Clark JB, Bates TE (1999) Beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457:131–134

    PubMed  CAS  Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596

    PubMed  CAS  Google Scholar 

  • Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR (2004) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 25:105–110

    PubMed  CAS  Google Scholar 

  • Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414:365–368

    PubMed  CAS  Google Scholar 

  • Chagnon P, Betard C, Robitaille Y, Cholette A, Gauvreau D (1995) Distribution of brain cytochrome oxidase activity in various neurodegenerative diseases. Neuroreport 6:711–715

    PubMed  CAS  Google Scholar 

  • Chance B, Williams CR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  • Chandrasekaran K, Hatanpaa K, Brady DR, Stoll J, Rapoport SI (1998) Downregulation of oxidative phosphorylation in Alzheimer disease: loss of cytochrome oxidase subunit mRNA in the hippocampus and entorhinal cortex. Brain Res 796:13–19

    PubMed  CAS  Google Scholar 

  • Chen M, Durr J, Fernandez HL (2000) Possible role of calpain in normal processing of beta-amyloid precursor protein in human platelets. Biochem Biophys Res Commun 273:170–175

    PubMed  CAS  Google Scholar 

  • Chen JQ, Yager JD, Russo J (2005) Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 1746:1–17

    PubMed  CAS  Google Scholar 

  • Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793:1540–1570

    PubMed  CAS  Google Scholar 

  • Chinnery PF, Turnbull DM (1999) Mitochondrial DNA and disease. Lancet 354:17–21

    CAS  Google Scholar 

  • Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    PubMed  CAS  Google Scholar 

  • Collman JP, Ghosh S, Dey A, Decréau RA (2009) Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Proc Natl Acad Sci USA 106:22090–22095

    PubMed  CAS  Google Scholar 

  • Cooper CE, Davies NA (2000) Effects of nitric oxide and peroxynitrite on the cytochrome oxidase Km for oxygen: implications for mitochondrial pathology. Biochim Biophys Acta 1459:390–396

    PubMed  CAS  Google Scholar 

  • Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM (2001) Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22:265–272

    PubMed  CAS  Google Scholar 

  • Curti D, Rognaoni F, Gasparini L, Cattaneo A, Paolillo M, Racchi M, Zani L, Trabucchi M, Bergamaschi S, Govoni S (1997) Oxidative metabolism in cultured fibroblasts derived from sporadic Alzheimer’s disease (AD) patients. Neurosci Lett 236:13–16

    PubMed  CAS  Google Scholar 

  • Dalmonte ME, Forte E, Genova ML, Giuffre A, Sarti P, Lenaz G (2009) Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential. J Biol Chem 284:32331–32335

    PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    PubMed  CAS  Google Scholar 

  • Davidzon G, Greene P, Mancuso M, Klos KJ, Ahlskog JE, Hirano M, DiMauro S (2006) Early-onset familial parkinsonism due to POLG mutations. Ann Neurol 59:859–862

    PubMed  CAS  Google Scholar 

  • Davies TA, Long HJ, Sgro K, Rathbun WH, McMenamin ME, Seetoo K, Tibbles H, Billingslea AM, Fine RE, Fishman JB, Levesque CA, Smith SJ, Wells JM, Simons ER (1997) Activated Alzheimer disease platelets retain more beta amyloid precursor protein. Neurobiol Aging 18:147–153

    PubMed  CAS  Google Scholar 

  • Defeudis FV (2002) Bilobalide and neuroprotection. Pharmacol Res 46:565–568

    PubMed  CAS  Google Scholar 

  • Demonacos C, Djordjevic-Markovic R, Tsawdaroglou N, Sekeris CE (1995) The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol 55:43–55

    PubMed  CAS  Google Scholar 

  • Demonacos CV, Karayanni N, Hatzoglou E, Tsiriyiotis C, Spandidos DA, Sekeris CE (1996) Mitochondrial genes as sites of primary action of steroid hormones. Steroids 61:226–232

    PubMed  CAS  Google Scholar 

  • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    PubMed  CAS  Google Scholar 

  • Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283:3120–3129

    PubMed  CAS  Google Scholar 

  • Diaz F, Villena A, Requena V, Gonzalez P, Peláez A, Pérez de Vargas I (1996) Quantitative histochemical study of cytochrome oxidase in the dLGN of aging rats. Mech Ageing Dev 91:47–54

    PubMed  CAS  Google Scholar 

  • DiDonato S, Zeviani M, Giovannini P, Savarese N, Rimoldi M, Mariotti C, Girotti F, Caraceni T (1993) Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology 43:2262–2268

    PubMed  CAS  Google Scholar 

  • Dluzen DE, McDermott JL (2000) Gender differences in neurotoxicity of the nigrostriatal dopaminergic system: implications for Parkinson’s disease. J Gend Specif Med 3:36–42

    PubMed  CAS  Google Scholar 

  • Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:331–337

    PubMed  CAS  Google Scholar 

  • Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by cytochrome bc1 complex. J Biol Chem 283:21649–21654

    PubMed  Google Scholar 

  • Dykens JA, Moos WH, Howell N (2005) Development of 17alpha-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann N Y Acad Sci 1052:116–135

    PubMed  CAS  Google Scholar 

  • Eckert A, Hauptmann S, Scherping I, Rhein V, Muller-Spahn F, Gotz J, Muller WE (2008) Soluble betaamyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5:157–159

    PubMed  CAS  Google Scholar 

  • Fahn S, Sulzer D (2004) Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1:139–154

    PubMed  Google Scholar 

  • Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96:2889–2908

    PubMed  CAS  Google Scholar 

  • Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J (2010) Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int 56:394–403

    PubMed  Google Scholar 

  • Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477:183–195

    PubMed  CAS  Google Scholar 

  • Frank V, Kadenbach B (1996) Regulation of the H+/e-stoichiometry of cytochrome c oxidase from bovine heart by intraliposomal ATP/ADP ratios. FEBS Lett 382:121–124

    PubMed  CAS  Google Scholar 

  • Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA (2010) Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol 45:563–572

    PubMed  CAS  Google Scholar 

  • Fujita K, Yamauchi M, Shibayama K, Ando M, Honda M, Nagata Y (1996) Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. J Neurosci Res 45:276–281

    PubMed  CAS  Google Scholar 

  • Fukada K, Zhang F, Vien A, Cashman NR, Zhu H (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3:1211–1223

    PubMed  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome c oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    PubMed  CAS  Google Scholar 

  • Fukui H, Moraes CT (2008) The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends Neurosci 31:251–256

    PubMed  CAS  Google Scholar 

  • Gould E, McEwen BS (1993) Neuronal birth and death. Curr Opin Neurobiol 3:676–682

    PubMed  CAS  Google Scholar 

  • Gourfinkel-An I, Vila M, Faucheux B, Duyckaerts C, Viallet F, Hauw JJ, Brice A, Agid Y, Hirsch EC (2002) Metabolic changes in the basal ganglia of patients with Huntington’s disease: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurochem 80:466–476

    PubMed  CAS  Google Scholar 

  • Greene JG, Porter RH, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an excitotoxic lesion in rat striatum. J Neurochem 61:1151–1154

    PubMed  CAS  Google Scholar 

  • Groen AK, Wanders RJA, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–2757

    PubMed  CAS  Google Scholar 

  • Grossman LI, Lomax MI (1997) Nuclear genes for cytochrome c oxidase. Biochim Biophys Acta 1352:174–192

    PubMed  CAS  Google Scholar 

  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    PubMed  CAS  Google Scholar 

  • Haaxma CA, Bloem BR, Borm GF, Oyen WJ, Leenders KL, Eshuis S, Booij J, Dluzen DE, Horstink MW (2007) Gender differences in Parkinson’s disease. J Neurol Neurosurg Psychiatry 78:819–824

    PubMed  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    PubMed  CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Hatzoglou E, Sekeris CE (1997) The detection of nucleotide sequences with strong similarity to hormone responsive elements in the genome of eubacteria and archaebacteria and their possible relation to similar sequences present in the mitochondrial genome. J Theor Biol 184:339–344

    PubMed  CAS  Google Scholar 

  • Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE (2006) Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673

    PubMed  CAS  Google Scholar 

  • Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B (2008) Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 7:1714–1724

    PubMed  CAS  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    PubMed  CAS  Google Scholar 

  • Hendler RW, Pardhasaradhi K, Reynafarje B, Ludwig B (1991) Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme. Biophys J 60:415–423

    PubMed  CAS  Google Scholar 

  • Hevner RF, Wong-Riley MTT (1989) Brain cytochrome oxidase: purification, antibody production, and immunohistochemical/histochemical correlations in the CNS. J Neurosci 9:3884–3898

    PubMed  CAS  Google Scholar 

  • Hevner RF, Liu S, Wong-Riley MT (1995) A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies. Neuroscience 65:313–342

    PubMed  CAS  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  • Hirano A, Nakano I, Kurland LT, Mulder DW, Holley PW, Saccomanno G (1984) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43:471–480

    PubMed  CAS  Google Scholar 

  • Horvat S, Beyer C, Arnold S (2006) Effect of hypoxia on the transcription pattern of subunit isoforms and the kinetics of cytochrome c oxidase in cortical astrocytes and cerebellar neurons. J Neurochem 99:937–951

    PubMed  CAS  Google Scholar 

  • Hsieh YC, Yu HP, Suzuki T, Choudhry MA, Schwacha MG, Bland KI, Chaudry IH (2006) Upregulation of mitochondrial respiratory complex IV by estrogen receptor-beta is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. J Mol Cell Cardiol 41:511–521

    PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  • Hüttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–123

    PubMed  Google Scholar 

  • Hüttemann M, Jaradat S, Grossman LI (2003a) Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb – the counterpart to testes-specific cytochrome c? Mol Reprod Dev 66:8–16

    PubMed  Google Scholar 

  • Hüttemann M, Schmidt TR, Grossman LI (2003b) A third isoform of cytochrome c oxidase subunit VIII is present in mammals. Gene 312:95–102

    PubMed  Google Scholar 

  • Hüttemann M, Lee I, Liu J, Grossman LI (2007) Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive element. FEBS J 274:5737–5748

    PubMed  Google Scholar 

  • Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170:1044–1048

    PubMed  CAS  Google Scholar 

  • Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J (2008) Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 149:3167–3175

    PubMed  CAS  Google Scholar 

  • Itoh K, Weis S, Mehraein P, Muller-Hocker J (1996) Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol Aging 17:843–848

    PubMed  CAS  Google Scholar 

  • Jackson M, Al-Chalabi A, Enayat ZE, Chioza B, Leigh PN, Morrison KE (1997) Copper/zinc superoxide dismutase 1 and sporadic amyotrophic lateral sclerosis: analysis of 155 cases and identification of an ovelinsertion mutation. Ann Neurol 42:803–807

    PubMed  CAS  Google Scholar 

  • Johann S, Dahm M, Kipp M, Beyer C, Arnold S (2010) Oestrogen regulates mitochondrial respiratory chain enzyme transcription in the mouse spinal cord. J Neuroendocrinol 22:926–935

    PubMed  CAS  Google Scholar 

  • Kadenbach B (1986) Regulation of respiration and ATP synthesis in higher organisms: hypothesis. J Bioenerg Biomembr 18:39–54

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Arnold S (1999) A second mechanism of respiratory control. FEBS Lett 447:131–134

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Reimann A (1992) Cytochrome c oxidase: tissue-specific expression of isoforms and regulation of activity. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 241–263

    Google Scholar 

  • Kadenbach B, Jarausch J, Hartmann R, Merle P (1983) Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. Anal Biochem 129:517–521

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Napiwotzki J, Frank V, Arnold S, Exner S, Hüttemann M (1998) Regulation of energy transduction and electron transfer in cytochrome c oxidase by adenine nucleotides. J Bioenerg Biomembr 30:25–33

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Hüttemann M, Arnold S, Lee I, Bender E (2000) Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 29:211–221

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Arnold S, Lee I, Hüttemann M (2004) The possible role of cytochrome c oxidase in stress- induced apoptosis and degenerative diseases. Biochim Biophys Acta 1655:400–408

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Vogt S (2009) Degenerative diseases, oxidative stress and cytochrome c oxidase function. Trends Mol Med 15:139–147

    PubMed  CAS  Google Scholar 

  • Kadenbach B, Ramzan R, Wen L, Vogt S (2010) New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta 1800:205–212

    PubMed  CAS  Google Scholar 

  • Kaim G, Dimroth P (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18:4118–4127

    PubMed  CAS  Google Scholar 

  • Kaneko I, Yamada N, Sakuraba Y, Kamenosono M, Tutumi S (1995) Suppression of mitochondrial succinate dehydrogenase, a primary target of beta-amyloid, and its derivative racemized at Ser residue. J Neurochem 65:2585–2593

    PubMed  CAS  Google Scholar 

  • Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, Hamasaki N, Kang D (2004) Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 24:9823–9834

    PubMed  CAS  Google Scholar 

  • Kato M, Saito H, Abe K (1997) Nanomolar amyloid beta protein-induced inhibition of cellular redox activity in cultured astrocytes. J Neurochem 68:1889–1895

    PubMed  CAS  Google Scholar 

  • Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    PubMed  CAS  Google Scholar 

  • Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19:3919–3935

    PubMed  CAS  Google Scholar 

  • Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, Wilson JM, DiStefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    PubMed  CAS  Google Scholar 

  • Klinge CM (2008) Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem 105:1342–1351

    PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    PubMed  CAS  Google Scholar 

  • Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39

    PubMed  CAS  Google Scholar 

  • Kunz WS, Kudin A, Vielhaber S, Elger CE, Attardi G, Villani G (2000) Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem 275:27741–27745

    PubMed  CAS  Google Scholar 

  • Kwast KE, Burke PV, Poyton RO (1998) Oxygen sensing and transcriptional regulation of oxygen-responsive genes in yeast. J Exp Biol 201:1177–1195

    PubMed  CAS  Google Scholar 

  • Kwast KE, Burke PV, Staahl BT, Poyton RO (1999) Oxygen sensing in yeast: evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. Proc Natl Acad Sci USA 96:5446–5451

    PubMed  CAS  Google Scholar 

  • Lardy HA, Wellman H (1952) Oxidative phosphorylations; role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem 195:215–224

    PubMed  CAS  Google Scholar 

  • LaSpada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    CAS  Google Scholar 

  • Lee HC, Pang CY, Hsu HS, Wei YH (1994) Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226:37–43

    PubMed  CAS  Google Scholar 

  • Lee I, Bender E, Arnold S, Kadenbach B (2001) New control of mitochondrial membrane potential and ROS formation – a hypothesis. Biol Chem 382:1629–1636

    PubMed  CAS  Google Scholar 

  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Hüttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100

    PubMed  CAS  Google Scholar 

  • Letellier T, Malgat M, Mazat JP (1993) Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta 1141:58–64

    PubMed  CAS  Google Scholar 

  • Li Y, Park JS, Deng JH, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38:283–291

    PubMed  CAS  Google Scholar 

  • Lightowlers RN, Chinnery PF, Turnbull DM, Howell N (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13:450–455

    PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to aging and degenerative diseases. Lancet 1:642–645

    PubMed  CAS  Google Scholar 

  • Lowry OH (1975) Energy metabolism in brain and its control. In: Ingvar DH, Lassen NA (eds) Brain work: the coupling of function, metabolism, and blood flow in the brain—proceedings of the Alfred Benzon symposium VII. Academic, New York, pp 48–64

    Google Scholar 

  • Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. Chembiochem 2:392–403

    PubMed  CAS  Google Scholar 

  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    PubMed  CAS  Google Scholar 

  • Malatesta F, Antonini G, Sarti P, Brunori M (1987) Modulation of cytochrome oxidase activity by inorganic and organic phosphate. Biochem J 248:161–165

    PubMed  CAS  Google Scholar 

  • Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 5:147–162

    PubMed  CAS  Google Scholar 

  • Manczak M, Jung Y, Park BS, Partovi D, Reddy PH (2005) Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem 92:494–504

    PubMed  CAS  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno-Sánchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101

    PubMed  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    PubMed  CAS  Google Scholar 

  • Marsden CD (1990) Parkinson’s disease. Lancet 335:948–952

    PubMed  CAS  Google Scholar 

  • Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277:29626–29633

    PubMed  CAS  Google Scholar 

  • Mattingly KA, Ivanova MM, Riggs KA, Wickramasinghe NS, Barch MJ, Klinge CM (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol 22:609–622

    PubMed  CAS  Google Scholar 

  • Maurer I, Zierz S, Moller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21:455–462

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    PubMed  Google Scholar 

  • Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZMA, Dong L, Figlewicz DA, Shaw PJ (2002) Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125:1522–1533

    PubMed  Google Scholar 

  • Misiak M, Beyer C, Arnold S (2010a) Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons. Biochim Biophys Acta 1797:1178–1188

    PubMed  CAS  Google Scholar 

  • Misiak M, Singh S, Drewlo S, Beyer C, Arnold S (2010b) Brain region-specific vulnerability of astrocytes in response to 3-nitropropionic acid is mediated by cytochrome c oxidase isoform expression. Cell Tissue Res 341:83–93

    PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    PubMed  CAS  Google Scholar 

  • Müftüoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G, Ogüs H, Dalkara T, Ozer N (2004) Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 19:544–548

    PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Murphy MP, Brand MD (1987) Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Nature 329:170–172

    PubMed  CAS  Google Scholar 

  • Mutisya EM, Bowling AC, Beal MF (1994) Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63:2179–2184

    PubMed  CAS  Google Scholar 

  • Napiwotzki J, Kadenbach B (1998) Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem 379:335–339

    PubMed  CAS  Google Scholar 

  • Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B (1997) ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem 378:1013–1021

    PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2004) Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol 287:R1244–R1249

    PubMed  CAS  Google Scholar 

  • Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686

    Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics, 3rd edn. Academic, London

    Google Scholar 

  • Nilsen J (2008) Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol 29:463–475

    PubMed  CAS  Google Scholar 

  • Nilsen J, Irwin RW, Gallaher TK, Brinton RD (2007) Estradiol in vivo regulation of brain mitochondrial proteome. J Neurosci 27:14069–14077

    PubMed  CAS  Google Scholar 

  • Ongwijitwat S, Wong-Riley MT (2005) Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 360:65–77

    PubMed  CAS  Google Scholar 

  • Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT (2006) Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 374:39–49

    PubMed  CAS  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc Natl Acad Sci USA 94:10547–10553

    PubMed  CAS  Google Scholar 

  • Papa S, Capitanio N, Capitanio G, De Nitto E, Minuto M (1991) The cytochrome chain of mitochondria exhibits variable H+/e stoichiometry. FEBS Lett 288:183–186

    PubMed  CAS  Google Scholar 

  • Parker WD Jr, Boyson SJ, Luder AS, Parks JK (1990a) Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40:1231–1234

    PubMed  Google Scholar 

  • Parker WD, Filley CM, Parks JK (1990b) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40:1302–1303

    PubMed  Google Scholar 

  • Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44:1090–1096

    PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10:53–62

    PubMed  CAS  Google Scholar 

  • Peyser CE, Folstein M, Chase GA, Starkstein S, Brandt J, Cockrell JR, Bylsma F, Coyle JT, McHugh PR, Folstein SE (1995) Trial of d-alpha-tocopherol in Huntington’s disease. Am J Psychiatry 152:1771–1775

    PubMed  CAS  Google Scholar 

  • Poyton RO, Goehring B, Droste M, Sevarino KA, Allen LA, Zhao XJ (1995) Cytochrome c oxidase from Saccharomyces cerevisiae. Methods Enzymol 260:97–116

    PubMed  CAS  Google Scholar 

  • Ramzan R, Staniek K, Kadenbach B, Vogt S (2010) Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797:1672–1680

    PubMed  CAS  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implication for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    PubMed  CAS  Google Scholar 

  • Reddy PH, Tripathy R, Troung Q, Thirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ, Reddy AP, Mao P, Manczak M (2011) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta. doi:10.1016/j.bbadis.2011.10.011

    Google Scholar 

  • Reimann A, Huther FJ, Berden JA, Kadenbach B (1988) Anions induce conformational changes and influence the activity and photoaffinity labeling by 8-azido-ATP of isolated cytochrome c oxidase. Biochem J 254:835–840

    Google Scholar 

  • Ristow M, Zarse K (2010) How increase oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro JA, Solano RM, Casarejos MJ, Gomez A, Perucho J, de Yebenes JG, Mena MA (2008) Gender differences and estrogen effects in parkin null mice. J Neurochem 106:2143–2157

    PubMed  CAS  Google Scholar 

  • Roemgens A, Singh S, Beyer C, Arnold S (2010) Inducers of chemical hypoxia act in a gender- and brain region-specific manner on primary astrocyte viability and cytochrome c oxidase. Neurotox Res 20:1–14

    PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak–Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  • Sasaki S, Iwata M (1996) Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 204:53–56

    PubMed  CAS  Google Scholar 

  • Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66:10–16

    PubMed  Google Scholar 

  • Schagger H, Ohm TG (1995) Human diseases with defects in oxidative phosphorylation. 2. F1F0-ATP synthase defects in Alzheimer disease revealed by blue native polyacrylamide gel electrophoresis (PAGE). Eur J Biochem 227:916–921

    PubMed  CAS  Google Scholar 

  • Schapira AH (1996) Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr Opin Neurol 9:260–264

    PubMed  CAS  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    PubMed  CAS  Google Scholar 

  • Sekeris CE (1990) The mitochondrial genome: a possible primary site of action of steroid hormones. In Vivo 4:317–320

    PubMed  CAS  Google Scholar 

  • Shearman MS, Hawtin SR, Tailor VJ (1995) The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. J Neurochem 65:218–227

    PubMed  CAS  Google Scholar 

  • Shi C, Xu J (2008) Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. J Bioenerg Biomembr 40:625–630

    PubMed  CAS  Google Scholar 

  • Shi C, Xu XW, Forster EL, Tang LF, Ge Z, Yew DT, Xu J (2008) Possible role of mitochondrial dysfunction in central neurodegeneration of ovariectomized rats. Cell Biochem Funct 26:172–178

    PubMed  CAS  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    PubMed  CAS  Google Scholar 

  • Shulman LM (2007) Gender differences in Parkinson’s disease. Gend Med 4:8–18

    PubMed  Google Scholar 

  • Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Ann Neurol 39:203–216

    PubMed  CAS  Google Scholar 

  • Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180:113–122

    PubMed  CAS  Google Scholar 

  • Simonian NA, Hyman BT (1994) Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J Neuropathol Exp Neurol 53:508–512

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Dykens JA (2008) Mitochondrial mechanisms of estrogen neuroprotection. Brain Res Rev 57:421–430

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Yang SH, Liu R, Perez E, Cai ZY, Covey DF, Green PS (2004) Estrogen-like compounds for ischemic neuroprotection. Stroke 35:2648–2651

    PubMed  CAS  Google Scholar 

  • Simpkins JW, Wang J, Wang X, Perez E, Prokai L, Dykens JA (2005) Mitochondria play a central role in estrogen-induced neuroprotection. Curr Drug Targets CNS Neurol Disord 4:69–83

    PubMed  CAS  Google Scholar 

  • Singh S, Misiak M, Beyer C, Arnold S (2009) Cytochrome c oxidase isoform IV-2 is involved in 3-nitropropionic acid-induced toxicity in striatal astrocytes. Glia 57:1480–1491

    PubMed  Google Scholar 

  • Singh S, Misiak M, Beyer C, Arnold S (2010) Brain region specificity of 3-nitropropionic acid-induced vulnerability of neurons involves cytochrome c oxidase. Neurochem Int 57:297–305

    PubMed  CAS  Google Scholar 

  • Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323

    PubMed  CAS  Google Scholar 

  • Stirone C, Duckles SP, Krause DN, Procaccio V (2005) Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire JP, Bennett JP, Davis RE, Parker WD (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49:918–925

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Parks JK, Cassarino DS, Trimmer PA, Miller SW, Maguire DJ, Sheehan JP, Maguire RS, Pattee G, Juel VC, Phillips LH, Tuttle JB, Bennett JP Jr, Davis RE, Parker WD Jr (1998) Mitochondria in sporadic amyotrophic lateral sclerosis. Exp Neurol 153:135–142

    PubMed  CAS  Google Scholar 

  • Tabrizi SJ, Cleeter M, Xuereb J, Taanman JW, Cooper JM, Schapira AVH (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32

    PubMed  CAS  Google Scholar 

  • Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS (2005) ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J 19:597–598

    PubMed  CAS  Google Scholar 

  • Taylor CT, Moncada S (2010) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30:643–647

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    PubMed  CAS  Google Scholar 

  • van den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Google Scholar 

  • Villani G, Attardi G (1997) In vivo control of respiration by cytochrome c oxidase in wild-type and mitochondrial DNA mutation-carrying human cells. Proc Natl Acad Sci USA 94:1166–1171

    PubMed  CAS  Google Scholar 

  • Villani G, Attardi G (2000) In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic Biol Med 29:202–210

    PubMed  CAS  Google Scholar 

  • Villani G, Greco M, Papa S, Attardi G (1998) Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem 273:31829–31836

    PubMed  CAS  Google Scholar 

  • Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91:1309–1313

    PubMed  CAS  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    PubMed  CAS  Google Scholar 

  • Watanabe T, Inoue S, Hiroi H, Orimo A, Kawashima H, Muramatsu M (1998) Isolation of estrogen responsive genes with a CpG island library. Mol Cell Biol 18:442–449

    PubMed  CAS  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    PubMed  CAS  Google Scholar 

  • West M, Coleman P, Flood D, Tronsco J (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    PubMed  CAS  Google Scholar 

  • Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156:65–72

    PubMed  CAS  Google Scholar 

  • Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, Lahiri S (1994) The primary oxygen sensor of the cat carotoid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett 351:370–374

    PubMed  CAS  Google Scholar 

  • Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    PubMed  CAS  Google Scholar 

  • Wong-Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J (1997) Cytochrome oxidase in Alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 37:3593–3608

    PubMed  CAS  Google Scholar 

  • Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J (2004) Are men at greater risk for Parkinson’s disease than women? J Neurol Neurosurg Psychiatry 75:637–639

    PubMed  CAS  Google Scholar 

  • Yang SH, Liu R, Perez EJ, Wen Y, Stevens SM Jr, Valencia T, Brun-Zinkernagel AM, Prokai L, Will Y, Dykens J, Koulen P, Simpkins JW (2004) Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 101:4130–4135

    PubMed  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Tsukihara T (1998) Crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution. J Bioenerg Biomembr 30:7–14

    PubMed  CAS  Google Scholar 

  • Zeng H, Chen Q, Zhao B (2004) Genistein ameliorates beta-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188

    PubMed  CAS  Google Scholar 

  • Zhao L, Wu TW, Brinton RD (2004) Estrogen receptor subtypes alpha and beta contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 1010:22–34

    PubMed  CAS  Google Scholar 

  • Zhao L, Jin C, Mao Z, Gopinathan MB, Rehder K, Brinton RD (2007) Design, synthesis, and estrogenic activity of a novel estrogen receptor modulator–a hybrid structure of 17beta-estradiol and vitamin E in hippocampal neurons. J Med Chem 50:4471–4481

    PubMed  CAS  Google Scholar 

  • Zhao L, Mao Z, Brinton RD (2009) A select combination of clinically relevant phytoestrogens enhances estrogen receptor {beta}-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 150:770–783

    PubMed  CAS  Google Scholar 

  • Zhou J, Zhou L, Hou D, Tang J, Sun J, Bondy SC (2011) Paeonol increases levels of cortical ­cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer’s disease. Brain Res 1388:141–147

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank the Deutsche Forschungsgemeinschaft (AR 343/4-1) for continuous financial support and my former and current research team members and colleagues for sharing a common interest in mitochondria, for challenging discussions, and for successful experiments to gain a deeper understanding of these powerful organelles. I apologize to all scientists whose names were not mentioned in the acknowledgments and/or cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arnold, S. (2012). Cytochrome c Oxidase and Its Role in Neurodegeneration and Neuroprotection. In: Kadenbach, B. (eds) Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, vol 748. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3573-0_13

Download citation

Publish with us

Policies and ethics