Skip to main content

2013 | OriginalPaper | Buchkapitel

19. Technology and the Role of Proof: The Case of Dynamic Geometry

verfasst von : Nathalie Sinclair, Ornella Robutti

Erschienen in: Third International Handbook of Mathematics Education

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter brings together two intersecting areas of research in mathematics education: teaching and learning with dynamic geometry environments (DGEs) and the teaching and learning of proof. We focus on developments in the literature since 2001 and, in particular, on (a) the evolution of the notion of “proof” in school mathematics and its impact on the kinds of research questions and studies undertaken over the past decade—including increasing use of DGEs at the primary school level; and (b) the epistemological and cognitive nature of dragging and measuring as they relate to proof.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arzarello, F., Micheletti, C., Olivero, F., Paola, D., & Robutti, O. (1998). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education(Vol. 2, pp. 24–31). Stellenbosh, South Africa: International Group for the Psychology of Mathematics Education. Arzarello, F., Micheletti, C., Olivero, F., Paola, D., & Robutti, O. (1998). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education(Vol. 2, pp. 24–31). Stellenbosh, South Africa: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (1999). I problemi di costruzione geometrica con l’aiuto di Cabri. L’insegnamento della matematica e delle scienze integrate, 22B(4), 309–338. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (1999). I problemi di costruzione geometrica con l’aiuto di Cabri. L’insegnamento della matematica e delle scienze integrate, 22B(4), 309–338.
Zurück zum Zitat Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM—Zentralblatt fur Didaktik der Mathematik, 34(3), 66–72.CrossRef Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM—Zentralblatt fur Didaktik der Mathematik, 34(3), 66–72.CrossRef
Zurück zum Zitat Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. ZDM—The International Journal on Mathematics Education, 42(7), 715–731.CrossRef Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. ZDM—The International Journal on Mathematics Education, 42(7), 715–731.CrossRef
Zurück zum Zitat Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The Maintaining Dragging Model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.CrossRef Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The Maintaining Dragging Model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.CrossRef
Zurück zum Zitat Balacheff, N. (1987). Processus de prevue et situations de validation. Educational Studies in Mathematics, 8, 147–176.CrossRef Balacheff, N. (1987). Processus de prevue et situations de validation. Educational Studies in Mathematics, 8, 147–176.CrossRef
Zurück zum Zitat Bartolini Bussi, M. (2009). Proof and proving in primary school: An experimental approach. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. De Villiers (Eds.), Proceedings of the ICMI Study 19 Conference: Proof and proving in mathematics education(Vol. 1, pp. 53–58). Taipei, Taiwan: National Taiwan Normal University. Bartolini Bussi, M. (2009). Proof and proving in primary school: An experimental approach. In F.-L. Lin, F.-J. Hsieh, G. Hanna, & M. De Villiers (Eds.), Proceedings of the ICMI Study 19 Conference: Proof and proving in mathematics education(Vol. 1, pp. 53–58). Taipei, Taiwan: National Taiwan Normal University.
Zurück zum Zitat Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning(pp. 843–908). Reston, VA: National Council of Teachers of Mathematics. Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning(pp. 843–908). Reston, VA: National Council of Teachers of Mathematics.
Zurück zum Zitat Battista, M. T. (2008). Representations and cognitive objects in modern school geometry. In G. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Cases and perspectives(Vol. 2, pp. 341–362). Charlotte, NC: Information Age Publishing. Battista, M. T. (2008). Representations and cognitive objects in modern school geometry. In G. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Cases and perspectives(Vol. 2, pp. 341–362). Charlotte, NC: Information Age Publishing.
Zurück zum Zitat Baulac, Y., Bellemain, F., & Laborde, J. M. (1988). Cabri-Géomètre, un logiciel d’aide à l’apprentissage de la géomètrie: Logiciel et manuel d’utilisation. Paris, France: Cedic-Nathan. Baulac, Y., Bellemain, F., & Laborde, J. M. (1988). Cabri-Géomètre, un logiciel d’aide à l’apprentissage de la géomètrie: Logiciel et manuel d’utilisation. Paris, France: Cedic-Nathan.
Zurück zum Zitat Bishop, A. J., Clements, M. A., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (Eds.). (2003). Second international handbook of mathematics education. Dordrecht, The Netherlands: Kluwer. Bishop, A. J., Clements, M. A., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (Eds.). (2003). Second international handbook of mathematics education. Dordrecht, The Netherlands: Kluwer.
Zurück zum Zitat Boero, P., Garuti, R., Lemut, E., & Mariotti, A. M. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education(Vol. 2, pp. 113–120). Valencia, Spain: International Group for the Psychology of Mathematics Education. Boero, P., Garuti, R., Lemut, E., & Mariotti, A. M. (1996). Challenging the traditional school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education(Vol. 2, pp. 113–120). Valencia, Spain: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking. New York, NY: Springer. Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking. New York, NY: Springer.
Zurück zum Zitat Borwein, J., & Bailey, D. (2008). Mathematics by experiment: Plausible reasoning in the 21st century. Wellesley, MA: A. K. Peters/CRC Press. Borwein, J., & Bailey, D. (2008). Mathematics by experiment: Plausible reasoning in the 21st century. Wellesley, MA: A. K. Peters/CRC Press.
Zurück zum Zitat Bruckheimer, M., & Arcavi, A. (2001). A Herrick among mathematicians or dynamic geometry as an aid to proof. International Journal of Computers in Mathematics Learning, 6, 113–126.CrossRef Bruckheimer, M., & Arcavi, A. (2001). A Herrick among mathematicians or dynamic geometry as an aid to proof. International Journal of Computers in Mathematics Learning, 6, 113–126.CrossRef
Zurück zum Zitat Centre de Recherche sur l’Ensignement des Mathématiques (CREM). (1995). Les mathématiques de la maternelle jusqu’à 18 ans. Essai d’élaboration d’un cadre global pour l’enseignement des mathématiques. In L. Grugnetti & V. Villani [Italian edition, La matematica dalla scuola materna all’Università]. Bologna, Italy: Pitagora Editrice. Centre de Recherche sur l’Ensignement des Mathématiques (CREM). (1995). Les mathématiques de la maternelle jusqu’à 18 ans. Essai d’élaboration d’un cadre global pour l’enseignement des mathématiques. In L. Grugnetti & V. Villani [Italian edition, La matematica dalla scuola materna all’Università]. Bologna, Italy: Pitagora Editrice.
Zurück zum Zitat Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2, 339–352.CrossRef Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005). Proofs through exploration in dynamic geometry environments. International Journal of Science and Mathematics Education, 2, 339–352.CrossRef
Zurück zum Zitat de Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24. de Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.
Zurück zum Zitat de Villiers, M. (1997). The role of proof in investigative, computer-based geometry: Some personal reflections. In J. King & D. Schattschneider (Eds.), Geometry turned on(pp. 15–24). Washington, DC: Mathematical Association of America. de Villiers, M. (1997). The role of proof in investigative, computer-based geometry: Some personal reflections. In J. King & D. Schattschneider (Eds.), Geometry turned on(pp. 15–24). Washington, DC: Mathematical Association of America.
Zurück zum Zitat de Villiers, M. (1998). An alternative approach to proof in dynamic geometry? In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space(pp. 369–393). Mahwah, NJ: Lawrence Erlbaum. de Villiers, M. (1998). An alternative approach to proof in dynamic geometry? In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space(pp. 369–393). Mahwah, NJ: Lawrence Erlbaum.
Zurück zum Zitat de Villiers, M. (1999). Rethinking proof with the Geometer’s Sketchpad. Emeryville, CA: Key Curriculum Press.CrossRef de Villiers, M. (1999). Rethinking proof with the Geometer’s Sketchpad. Emeryville, CA: Key Curriculum Press.CrossRef
Zurück zum Zitat de Villiers, M. (2010). The role of experimentation in mathematics and mathematics education. In G. Hanna & H. N. Jahnke (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives(pp. 205–222). Basel, Switzerland: Springer Books.CrossRef de Villiers, M. (2010). The role of experimentation in mathematics and mathematics education. In G. Hanna & H. N. Jahnke (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives(pp. 205–222). Basel, Switzerland: Springer Books.CrossRef
Zurück zum Zitat Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.CrossRef Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.CrossRef
Zurück zum Zitat Drijvers, P., Kieran, C., Mariotti, M., Ainley, J., Andresen, M., Chan, Y., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., & Meagher, M. (2010). Integrating technology into mathematics education: Theoretical perspectives. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain(pp. 89–132). New York, NY: Springer. Drijvers, P., Kieran, C., Mariotti, M., Ainley, J., Andresen, M., Chan, Y., Dana-Picard, T., Gueudet, G., Kidron, I., Leung, A., & Meagher, M. (2010). Integrating technology into mathematics education: Theoretical perspectives. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain(pp. 89–132). New York, NY: Springer.
Zurück zum Zitat Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61, 103–131.CrossRef Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61, 103–131.CrossRef
Zurück zum Zitat Erez, M. M., & Yerulshalmy, M. (2006). “If you can turn a rectangle into a square, you can turn a square into a rectangle …”: Young students experience the dragging tool. International Journal of Computers for Mathematical Learning, 11, 271–299.CrossRef Erez, M. M., & Yerulshalmy, M. (2006). “If you can turn a rectangle into a square, you can turn a square into a rectangle …”: Young students experience the dragging tool. International Journal of Computers for Mathematical Learning, 11, 271–299.CrossRef
Zurück zum Zitat Frant, J. B., & de Costra, R. M. (2000, July). Proofs in geometry: Different concepts build upon very different cognitive mechanisms.Paper presented at the ICME 9, TSG12: Proof and Proving in Mathematics Education, Tokyo, Japan. Frant, J. B., & de Costra, R. M. (2000, July). Proofs in geometry: Different concepts build upon very different cognitive mechanisms.Paper presented at the ICME 9, TSG12: Proof and Proving in Mathematics Education, Tokyo, Japan.
Zurück zum Zitat Guala, E., & Boero, P. (1999). Time, complexity and learning. Annals of the New York Academy of Sciences, 879, 164–167.CrossRef Guala, E., & Boero, P. (1999). Time, complexity and learning. Annals of the New York Academy of Sciences, 879, 164–167.CrossRef
Zurück zum Zitat Guven, B., Cekmez, E., & Maratas, I. (2010). Using empirical evidence in the process of proving: The case of dynamic geometry. Teaching Mathematics and Its Applications, 29(4), 193–207.CrossRef Guven, B., Cekmez, E., & Maratas, I. (2010). Using empirical evidence in the process of proving: The case of dynamic geometry. Teaching Mathematics and Its Applications, 29(4), 193–207.CrossRef
Zurück zum Zitat Hadas, N., Hershkowitz, R., & Schwartz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127–150.CrossRef Hadas, N., Hershkowitz, R., & Schwartz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127–150.CrossRef
Zurück zum Zitat Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2010). Explanation and proof in mathematics: Philosophical and educational perspectives. New York, NY: Springer. Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2010). Explanation and proof in mathematics: Philosophical and educational perspectives. New York, NY: Springer.
Zurück zum Zitat Healy, L., & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 1(3), 235–256.CrossRef Healy, L., & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 1(3), 235–256.CrossRef
Zurück zum Zitat Herbst, P. (2002). Engaging students in proving: A double bind on the teacher. Journal for Research in Mathematics Education, 33(3), 176–203.CrossRef Herbst, P. (2002). Engaging students in proving: A double bind on the teacher. Journal for Research in Mathematics Education, 33(3), 176–203.CrossRef
Zurück zum Zitat Hollebrands, K. F., Conner, A. M., & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324–350. Hollebrands, K. F., Conner, A. M., & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324–350.
Zurück zum Zitat Hollebrands, K., Laborde, C., & Sträßer, R. (2008). Technology and the learning of geometry at the secondary level. In K. Heid & G. Blume (Eds.), Research in technology and the teaching and learning of mathematics: Research syntheses(Vol. 1, pp. 155–203). Charlotte, NC: Information Age Publishing. Hollebrands, K., Laborde, C., & Sträßer, R. (2008). Technology and the learning of geometry at the secondary level. In K. Heid & G. Blume (Eds.), Research in technology and the teaching and learning of mathematics: Research syntheses(Vol. 1, pp. 155–203). Charlotte, NC: Information Age Publishing.
Zurück zum Zitat Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education(pp. 323–349). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRef Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education(pp. 323–349). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRef
Zurück zum Zitat Jackiw, N. (1991, 2001). The Geometer’s Sketchpad[Computer Program]. Emeryville, CA: Key Curriculum Press. Jackiw, N. (1991, 2001). The Geometer’s Sketchpad[Computer Program]. Emeryville, CA: Key Curriculum Press.
Zurück zum Zitat Jackiw, N. (2006). Mechanism and magic in the psychology of dynamic geometry. In N. Sinclair, D. Pimm, & W. Higginson (Eds.), Mathematics and the aesthetics: New approaches to an ancient affinity(pp. 145–159). New York, NY: Springer. Jackiw, N. (2006). Mechanism and magic in the psychology of dynamic geometry. In N. Sinclair, D. Pimm, & W. Higginson (Eds.), Mathematics and the aesthetics: New approaches to an ancient affinity(pp. 145–159). New York, NY: Springer.
Zurück zum Zitat Jahn, A. P. (2002). “Locus” and “Trace” in Cabri-géomètre: Relationships between geometric and functional aspects in a study of transformations. ZDM—Zentralblatt fur Didaktik der Mathematik, 34(3), 78–84.CrossRef Jahn, A. P. (2002). “Locus” and “Trace” in Cabri-géomètre: Relationships between geometric and functional aspects in a study of transformations. ZDM—Zentralblatt fur Didaktik der Mathematik, 34(3), 78–84.CrossRef
Zurück zum Zitat Japanese Society of Mathematics Education. (2000). Mathematics programme in Japan. Tokyo, Japan: Author. Japanese Society of Mathematics Education. (2000). Mathematics programme in Japan. Tokyo, Japan: Author.
Zurück zum Zitat Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55–85.CrossRef Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics, 44, 55–85.CrossRef
Zurück zum Zitat Jones, K., Mackrell, K., & Stevenson, I. (2010). Designing digital technologies and learning activities for different geometries. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain New ICMI Study Series(Vol. 13, pp. 47–60). Dordrecht, The Netherlands: Springer. Jones, K., Mackrell, K., & Stevenson, I. (2010). Designing digital technologies and learning activities for different geometries. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain New ICMI Study Series(Vol. 13, pp. 47–60). Dordrecht, The Netherlands: Springer.
Zurück zum Zitat Laborde, C. (1992). Solving problems in computer based geometry environments: The influence of the features of the software. ZDM—Zentrablatt für Didactik des Mathematik, 92(4), 128–135. Laborde, C. (1992). Solving problems in computer based geometry environments: The influence of the features of the software. ZDM—Zentrablatt für Didactik des Mathematik, 92(4), 128–135.
Zurück zum Zitat Laborde, C. (1998). Relationship between the spatial and theoretical in geometry: The role of computer dynamic representations in problem solving. In J. D. Tinsley & D. C. Johnson (Eds.), Information and communications technologies in school mathematics(pp. 183–195). London, UK: Chapman & Hall. Laborde, C. (1998). Relationship between the spatial and theoretical in geometry: The role of computer dynamic representations in problem solving. In J. D. Tinsley & D. C. Johnson (Eds.), Information and communications technologies in school mathematics(pp. 183–195). London, UK: Chapman & Hall.
Zurück zum Zitat Laborde, C. (2000). Dynamical geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1–2), 151–161.CrossRef Laborde, C. (2000). Dynamical geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1–2), 151–161.CrossRef
Zurück zum Zitat Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-Géomètre. International Journal of Computers for Mathematical Learning, 6, 283–317.CrossRef Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-Géomètre. International Journal of Computers for Mathematical Learning, 6, 283–317.CrossRef
Zurück zum Zitat Laborde, C. (2004). The hidden role of diagrams in pupils’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education(pp. 1–21). Dordrecht, The Netherlands: Kluwer Academic Publishers. Laborde, C. (2004). The hidden role of diagrams in pupils’ construction of meaning in geometry. In J. Kilpatrick, C. Hoyles, & O. Skovsmose (Eds.), Meaning in mathematics education(pp. 1–21). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Zurück zum Zitat Laborde, C., Kynigos, C., Hollebrands, K., & Sträßer, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future(pp. 275–304). Rotterdam, The Netherlands: Sense Publishers. Laborde, C., Kynigos, C., Hollebrands, K., & Sträßer, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future(pp. 275–304). Rotterdam, The Netherlands: Sense Publishers.
Zurück zum Zitat Lassak, M. (2009). Using dynamic graphs to reveal student reasoning. International Journal of Mathematical Education in Science and Technology, 40(5), 690–696.CrossRef Lassak, M. (2009). Using dynamic graphs to reveal student reasoning. International Journal of Mathematical Education in Science and Technology, 40(5), 690–696.CrossRef
Zurück zum Zitat Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space(pp. 137–167). Mahwah, NJ: Lawrence Erlbaum. Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space(pp. 137–167). Mahwah, NJ: Lawrence Erlbaum.
Zurück zum Zitat Leung, A. (2003). Dynamic geometry and the theory of variation. In N. A. Pateman, B. J. Doughherty, & J. T. Zillox (Eds.), Proceedings of PME 27: Psychology of Mathematics Education 27th International ConferenceVolume 3 (pp. 197–204). Honolulu: University of Hawaii.CrossRef Leung, A. (2003). Dynamic geometry and the theory of variation. In N. A. Pateman, B. J. Doughherty, & J. T. Zillox (Eds.), Proceedings of PME 27: Psychology of Mathematics Education 27th International ConferenceVolume 3 (pp. 197–204). Honolulu: University of Hawaii.CrossRef
Zurück zum Zitat Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers in Mathematics Learning, 13, 135–157.CrossRef Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers in Mathematics Learning, 13, 135–157.CrossRef
Zurück zum Zitat Leung, A., & Or, C. M. (2007). From construction to proof: Explanations in dynamic geometry environments. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education(Vol. 3, pp. 177–184). Seoul, Korea: International Group for the Psychology of Mathematics Education. Leung, A., & Or, C. M. (2007). From construction to proof: Explanations in dynamic geometry environments. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education(Vol. 3, pp. 177–184). Seoul, Korea: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Mariotti, M. A. (2000). Introduction to proof: The mediation of dynamical software environment. Educational Studies in Mathematics, 44(1–2), 25–53.CrossRef Mariotti, M. A. (2000). Introduction to proof: The mediation of dynamical software environment. Educational Studies in Mathematics, 44(1–2), 25–53.CrossRef
Zurück zum Zitat Mariotti, M. A. (2002). Influence of technologies advances on students’ math learning. In L. English (Ed.), Handbook of international research in mathematics education(pp. 695–723). Mahwah, NJ: Lawrence Erbaum. Mariotti, M. A. (2002). Influence of technologies advances on students’ math learning. In L. English (Ed.), Handbook of international research in mathematics education(pp. 695–723). Mahwah, NJ: Lawrence Erbaum.
Zurück zum Zitat Mariotti, M. A. (2006). Proof and proving in mathematics education. In A. Guttiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future(pp. 173–204). Rotterdam, The Netherlands: Sense Publishing. Mariotti, M. A. (2006). Proof and proving in mathematics education. In A. Guttiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future(pp. 173–204). Rotterdam, The Netherlands: Sense Publishing.
Zurück zum Zitat Mariotti, M. A. (2010). Proofs, semiotics and artefacts of information technologies. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives(pp. 169–190). Dordrecht, The Netherlands: Springer.CrossRef Mariotti, M. A. (2010). Proofs, semiotics and artefacts of information technologies. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives(pp. 169–190). Dordrecht, The Netherlands: Springer.CrossRef
Zurück zum Zitat Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87–125.CrossRef Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, 87–125.CrossRef
Zurück zum Zitat Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum. Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum.
Zurück zum Zitat Ministry of Education, People’s Republic of China. (2001). Full-time obligatory education mathematics curriculum standards (experimental version)[in Chinese]. Beijing, China: Beijing University Press. Ministry of Education, People’s Republic of China. (2001). Full-time obligatory education mathematics curriculum standards (experimental version)[in Chinese]. Beijing, China: Beijing University Press.
Zurück zum Zitat National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.Reston, VA: Author. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.Reston, VA: Author.
Zurück zum Zitat Noss, R., & Hoyles, C. (Eds.). (1996). Windows on mathematical meanings—Learning cultures and computers. Dordrecht, The Netherlands: Kluwer Academic Publishers. Noss, R., & Hoyles, C. (Eds.). (1996). Windows on mathematical meanings—Learning cultures and computers. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Zurück zum Zitat Olivero, F. (2002). The proving process within a dynamic geometry environment(Doctoral thesis). University of Bristol, UK Olivero, F. (2002). The proving process within a dynamic geometry environment(Doctoral thesis). University of Bristol, UK
Zurück zum Zitat Olivero, F. (2006). Students’ constructions of dynamic geometry. In C. Hoyles, J.-B. Lagrange, L.-H. Son, & N. Sinclair (Eds.), Proceedings of the 17th International Congress on Mathematical Instruction Study Conference “Technology Revisited”(pp. 433–442). Hanoi, Vietnam: Hanoi Institute of Technology and Didirem University. Olivero, F. (2006). Students’ constructions of dynamic geometry. In C. Hoyles, J.-B. Lagrange, L.-H. Son, & N. Sinclair (Eds.), Proceedings of the 17th International Congress on Mathematical Instruction Study Conference “Technology Revisited”(pp. 433–442). Hanoi, Vietnam: Hanoi Institute of Technology and Didirem University.
Zurück zum Zitat Olivero, F., & Robutti, O. (2001). Measuring in Cabri as a bridge between perception and theory. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 9–16). Utrecht, The Netherlands: International Group for the Psychology of Mathematics Education. Olivero, F., & Robutti, O. (2001). Measuring in Cabri as a bridge between perception and theory. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 9–16). Utrecht, The Netherlands: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Olivero, F., & Robutti, O. (2002). An exploratory study of students’ measurement activity in a dynamic geometry environment. In J. Novotńa (Ed.), Proceedings of CERME 2(Vol. 1, pp. 215–226). Prague, Czech Republic: Charles University. Olivero, F., & Robutti, O. (2002). An exploratory study of students’ measurement activity in a dynamic geometry environment. In J. Novotńa (Ed.), Proceedings of CERME 2(Vol. 1, pp. 215–226). Prague, Czech Republic: Charles University.
Zurück zum Zitat Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156.CrossRef Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135–156.CrossRef
Zurück zum Zitat Oner, D. (2008). A comparative analysis of high school geometry curricula: What do technology-intensive, standards-based, and traditional curricula have to offer in terms mathematical proof and reasoning? Journal of Computers in Mathematics and Science Teaching, 27(4), 467–497. Oner, D. (2008). A comparative analysis of high school geometry curricula: What do technology-intensive, standards-based, and traditional curricula have to offer in terms mathematical proof and reasoning? Journal of Computers in Mathematics and Science Teaching, 27(4), 467–497.
Zurück zum Zitat Oner, D. (2009). The role of dynamic geometry software in high school geometry curricula: An analysis of proof tasks. International Journal for Technology in Mathematics Education, 16(3), 109–121. Oner, D. (2009). The role of dynamic geometry software in high school geometry curricula: An analysis of proof tasks. International Journal for Technology in Mathematics Education, 16(3), 109–121.
Zurück zum Zitat Rabardel, P. (1995). Les hommes et les technologies—Approche cognitive des instruments contemporains. Paris, France: A. Colin. Rabardel, P. (1995). Les hommes et les technologies—Approche cognitive des instruments contemporains. Paris, France: A. Colin.
Zurück zum Zitat Radford, L. (2010). The anthropological turn in mathematics education and its implication on the meaning of mathematical activity and classroom practice. Acta Didactica Universitatis Comenianae, 10, 103–120. Radford, L. (2010). The anthropological turn in mathematics education and its implication on the meaning of mathematical activity and classroom practice. Acta Didactica Universitatis Comenianae, 10, 103–120.
Zurück zum Zitat Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica III, 7, 5–41.CrossRef Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica III, 7, 5–41.CrossRef
Zurück zum Zitat Sinclair, N. (2002). The kissing triangles: The aesthetics of mathematical discovery. International Journal of Computers for Mathematical Learning, 7(1), 45–63.CrossRef Sinclair, N. (2002). The kissing triangles: The aesthetics of mathematical discovery. International Journal of Computers for Mathematical Learning, 7(1), 45–63.CrossRef
Zurück zum Zitat Sinclair, M. P. (2003). Some implications of the results of a case study for the design of pre-constructed dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317. Sinclair, M. P. (2003). Some implications of the results of a case study for the design of pre-constructed dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317.
Zurück zum Zitat Sinclair, N. (2008). The history of the geometry curriculum in the United States. Charlotte, NC: Information Age. Sinclair, N. (2008). The history of the geometry curriculum in the United States. Charlotte, NC: Information Age.
Zurück zum Zitat Sinclair, N., Arzarello, F., Gaisman, M. T., & Lozano, M. D. (2009). Implementing digital technologies at a national scale. In C. Hoyles & J.-B. Lagrange (Eds.), Digital technologies and mathematics teaching and learning: Rethinking the terrain(Vol. 13, pp. 61–78). New York, NY: Springer.CrossRef Sinclair, N., Arzarello, F., Gaisman, M. T., & Lozano, M. D. (2009). Implementing digital technologies at a national scale. In C. Hoyles & J.-B. Lagrange (Eds.), Digital technologies and mathematics teaching and learning: Rethinking the terrain(Vol. 13, pp. 61–78). New York, NY: Springer.CrossRef
Zurück zum Zitat Sinclair, N., Moss, J., & Jones, K. (2010). Developing geometric discourse using DGS in K-3. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 185–192). Belo Horizonte, Brazil: International Group for the Psychology of Mathematics Education. Sinclair, N., Moss, J., & Jones, K. (2010). Developing geometric discourse using DGS in K-3. In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 185–192). Belo Horizonte, Brazil: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135–150.CrossRef Sinclair, N., & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135–150.CrossRef
Zurück zum Zitat Sträßer, R. (2009). Instruments for learning and teaching mathematics. An attempt to theorise about the role of textbooks, computers and other artefacts to teach and learn mathematics. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education(Vol. 1, pp. 67–81). Thessaloniki, Greece: International Group for the Psychology of Mathematics Education. Sträßer, R. (2009). Instruments for learning and teaching mathematics. An attempt to theorise about the role of textbooks, computers and other artefacts to teach and learn mathematics. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education(Vol. 1, pp. 67–81). Thessaloniki, Greece: International Group for the Psychology of Mathematics Education.
Zurück zum Zitat Stylianides, A. J. (2007). The notion of proof in the context of elementary school mathematics. Educational Studies in Mathematics, 65, 1–20.CrossRef Stylianides, A. J. (2007). The notion of proof in the context of elementary school mathematics. Educational Studies in Mathematics, 65, 1–20.CrossRef
Zurück zum Zitat Stylianou, D., Knuth, E., & Blanton, M. (Eds.). (2009). Teaching and learning proof across the grades: A K-16 perspective. New York, NY: Routledge. Stylianou, D., Knuth, E., & Blanton, M. (Eds.). (2009). Teaching and learning proof across the grades: A K-16 perspective. New York, NY: Routledge.
Zurück zum Zitat Trouche, L. (2004). Managing complexity of human machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRef Trouche, L. (2004). Managing complexity of human machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRef
Zurück zum Zitat Unione Matematica Italiana. (2004). G. Anichini, F. Arzarello, L. Ciarrapico & O. Robutti (Eds.), Matematica 2003. La matematica per il cittadino. Attività didattiche e prove di verifica per un nuovo curricolo di Matematica (ciclo secondario).Lucca, Italy: Matteoni Stampatore. Unione Matematica Italiana. (2004). G. Anichini, F. Arzarello, L. Ciarrapico & O. Robutti (Eds.), Matematica 2003. La matematica per il cittadino. Attività didattiche e prove di verifica per un nuovo curricolo di Matematica (ciclo secondario).Lucca, Italy: Matteoni Stampatore.
Zurück zum Zitat Vadcard, L. (1999). La validation en géomètrie au collège avec Cabri-Géomètre: Mesures exploratoire et mesures probatoires. Petit X, 50, 5–21. Vadcard, L. (1999). La validation en géomètrie au collège avec Cabri-Géomètre: Mesures exploratoire et mesures probatoires. Petit X, 50, 5–21.
Zurück zum Zitat Verillion, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.CrossRef Verillion, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.CrossRef
Zurück zum Zitat Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press. Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Metadaten
Titel
Technology and the Role of Proof: The Case of Dynamic Geometry
verfasst von
Nathalie Sinclair
Ornella Robutti
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-4684-2_19