Skip to main content

Overcoming Hurdles in Translating Visual Search Research Between the Lab and the Field

  • Chapter
  • First Online:

Part of the book series: Nebraska Symposium on Motivation ((NSM))

Abstract

Research in visual search can be vital to improving performance in careers such as radiology and airport security screening. In these applied, or “field,” searches, accuracy is critical, and misses are potentially fatal; however, despite the importance of performing optimally, radiological and airport security searches are nevertheless flawed. Extensive basic research in visual search has revealed cognitive mechanisms responsible for successful visual search as well as a variety of factors that tend to inhibit or improve performance. Ideally, the knowledge gained from such laboratory-based research could be directly applied to field searches, but several obstacles stand in the way of straightforward translation; the tightly controlled visual searches performed in the lab can be drastically different from field searches. For example, they can differ in terms of the nature of the stimuli, the environment in which the search is taking place, and the experience and characteristics of the searchers themselves. The goal of this chapter is to discuss these differences and how they can present hurdles to translating lab-based research to field-based searches. Specifically, most search tasks in the lab entail searching for only one target per trial, and the targets occur relatively frequently, but field searches may contain an unknown and unlimited number of targets, and the occurrence of targets can be rare. Additionally, participants in lab-based search experiments often perform under neutral conditions and have no formal training or experience in search tasks; conversely, career searchers may be influenced by the motivation to perform well or anxiety about missing a target, and they have undergone formal training and accumulated significant experience searching. This chapter discusses recent work that has investigated the impacts of these differences to determine how each factor can influence search performance. Knowledge gained from the scientific exploration of search can be applied to field searches but only when considering and controlling for the differences between lab and field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the purposes of this chapter, we will use “lab” to refer to visual search experiments conducted by cognitive psychologists with inexperienced searchers in a laboratory setting, and we will use “field” to refer to visual searches conducted as part of normal activities in naturalistic settings that are often done by highly trained “expert” searchers.

References

  • Alvarez, G. A., & Cavanagh, P. (2004) The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111.

    Article  PubMed  Google Scholar 

  • Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108, 10367–10371.

    Google Scholar 

  • Appelbaum, L. G., Schroeder, J. E., Cain, M. S., & Mitroff, S. R. (2011). Improved visual cognition through stroboscopic training. Frontiers in Psychology, 2, 276. doi: 10.3389/fpsyg.2011.00276.

    Article  PubMed  Google Scholar 

  • Appelbaum, L. G., Cain, M. S., Schroeder, J. E., Darling, E. F., & Mitroff, S. R. (in press). Stroboscopic visual training improves information encoding in short-term memory.

    Google Scholar 

  • Ball, K., & Sekuler, R. (1982). A Specific and enduring improvement in visual motion discrimination. Science, 218, 697–698.

    Article  PubMed  Google Scholar 

  • Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion discrimination. Vision Research, 27, 953–967.

    Article  PubMed  Google Scholar 

  • Beard, B. L., Levi, D. M., & Reich, L. N. (1995). Perceptual learning in parafoveal vision. Vision Research, 35(12), 1679–1690.

    Article  PubMed  Google Scholar 

  • Bende, M. & Nordin, S. (1997) Perceptual learning in olfaction: Professional wine tasters versus controls. Physiology & Behavior, 62, 1065–1070.

    Article  Google Scholar 

  • Bennett, S., Ashford, D., Rioja, N., & Elliott, D. (2004). Intermittent vision and one-hand catching: The effect of general and specific task experience. Journal of Motor Behavior, 36, 442–449.

    Article  PubMed  Google Scholar 

  • Berbaum, K. S., Franken, E. A. Jr., Dorfman, D. D., Miller, E. M., Krupinski, E. A., & Kreinbring, K. (1996). The cause of satisfaction of search effects in contrast studies of the abdomen. Academic Radiology, 3, 815–826.

    Article  PubMed  Google Scholar 

  • Berbaum, K.S., Franken, E. A. Jr., Dorfman, D.D., Miller, E.M., Caldwell, R.T., Kuehn, D.M., & Berbaum, M.L. (1998). Role of faulty visual search in the satisfaction of search effect in chest radiography. Academic Radiology, 5, 9–19.

    Article  PubMed  Google Scholar 

  • Berbaum, K. S., Franken, E. A. Jr., Dorfman, D. D., Caldwell, R. T., & Krupinski, E. A. (2000). Role of faulty decision making in the satisfaction of search effect in chest radiography. Academic Radiology, 7, 1098–1106.

    Article  Google Scholar 

  • Berbaum, K. S., Brandser, E. A., Franklin, E. A. J., Dorfman, D. D., Caldwell, R. T., & Krupinski, E. A. (2001). Gaze dwell times on acute trauma injuries missed because of satisfaction of search. Academic Radiology, 8(4), 304–314.

    Article  PubMed  Google Scholar 

  • Berbaum, K. S., Franken, E. A. Jr., Dorfman, D. D., Caldwell, R. T., & Lu, C. H. (2005). Can order of report prevent satisfaction of search in abdominal contrast studies? Academic Radiology, 12, 74–84.

    Article  PubMed  Google Scholar 

  • Berbaum, K.S., Franklin, E.A., Caldwell, R.T., & Schartz, K.M. (2010). Satisfaction of search in traditional radiographic imaging. The handbook of medical image perception and techniques (pp. 107–138). Cambridge: Cambridge University Press.

    Google Scholar 

  • Berlin, L. (1994). Reporting the ‘‘missed’’ radiologic diagnosis: Medicolegal and ethical considerations. Radiology, 192, 183–187.

    PubMed  Google Scholar 

  • Biederman, I. & Shiffrar, M. (1987). Sexing day-old chicks: A case study and expert systems analysis of a difficult perceptual learning task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 640–645.

    Article  Google Scholar 

  • Bolfing, A., Halbherr, T., & Schwaninger, A. (2008). Using speed measures to predict performance in x-ray luggage screening tasks. Proceedings of the IEEE International Carnahan Conference on Security Technology, Zurich, October 5–8, 2009.

    Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387−398.

    Google Scholar 

  • Buck, L (1966) Reaction time as a measure of perceptual vigilance. Psychological Bulletin, 65(5), 291–304.

    Google Scholar 

  • Bond, A. B. (1983). Visual search and selection of natural stimuli in the pigeon: The attention threshold hypothesis. Journal of Experimental Psychology: Animal Behavior Processes, 9, 292–306.

    Article  PubMed  Google Scholar 

  • Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (in press). A Bayesian optimal foraging model of human visual search. Psychological Science.

    Google Scholar 

  • Cain, M. S., Dunsmoor, J. E., LaBar, K. S., & Mitroff, S. R. (2011). Anticipatory anxiety hinders detection of a second target in dual-target search. Psychological Science, 22, 866–871. doi:10.1177/0956797611412393

    Article  PubMed  Google Scholar 

  • Cain, M. S., Adamo, S. H., & Mitroff, S. R. (2012a). What eye-tracking can tell us about multiple-target visual search. Poster presented at the annual meeting of the Vision Sciences Society, Naples, FL.

    Google Scholar 

  • Cain, M. S., Landau, A. N., & Shimamura, A. P. (2012b). Action video game experience reduces the cost of switching tasks. Attention, Perception, & Psychophysics. 74(4), 641–647.

    Article  Google Scholar 

  • Callan, D. E., & Schweighofer, N. (2008). Positive and negative modulation of word learning by reward anticipation. Human Brain Mapping, 29, 237–249.

    Article  PubMed  Google Scholar 

  • Camerer, C. F., & Hogarth, R. (1999). The effects of financial incentives in economics experiments: A review and capital-labor-production framework. Journal of Risk and Uncertainty, 19, 7–42.

    Article  Google Scholar 

  • Caplovitz, G. P., & Kastner, S. (2009). Carrot sticks or joysticks: Video games improve vision. Nature Neuroscience, 12(5), 527−528.

    Google Scholar 

  • Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119, 217−230.

    Google Scholar 

  • Chan, A. H. S., & Chan, C. Y. (2000). Validating the random search model for a double-target search task. Theoretical Issues in Ergonomics Science, 1(2), 157–167. doi:10.1080/14639220050171315.

    Article  Google Scholar 

  • Chan, A. H. S., Courtney, A. J., & Ma, C. W. (2002). Visual performance on detection tasks with double-targets of the same and different difficulty. Ergonomics, 45(13), 934–948. doi:10.1080/00140130210166087.

    Article  PubMed  Google Scholar 

  • Chan, H. S., & Courtney, A. J. (1995). Visual performance on detection tasks with two targets. International Journal of Human Factors in Manufacturing, 5(4), 417–428.

    Article  Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology 4, 55–81.

    Article  Google Scholar 

  • Chun, M. M. & Wolfe, J. M. (1996). Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology, 30, 39–78.

    Article  PubMed  Google Scholar 

  • Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingston, A. (2010). Reduced attentional capture in action video game players. Attention, Perception, & Psychophysics, 72(3), 667−671.

    Google Scholar 

  • Clark, K., Samei, E., Baker, J., & Mitroff, S. R. (2011a). Expertise in radiological screening and satisfaction of search. Poster presented at the annual Object Perception, Attention, and Memory meeting. Seattle, WA.

    Google Scholar 

  • Clark, K., Cain, M. S. Adcock, R. A., & Mitroff, S. R. (2011b). Interactions between reward, feedback, and timing structures on dual-target search performance. Poster presented at the annual meeting of the Vision Sciences Society, Naples, FL.

    Google Scholar 

  • Clark, K., Fleck, M. S., & Mitroff, S. R. (2011c). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica, 136, 67–72.

    Article  Google Scholar 

  • Colzato, L. S., van Leeuwen, P. J. A., Van Den Wildenberg, W. P. M., & Hommel, B. (2010). DOOM’d to switch: Superior cognitive flexibility in players of first person shooter games. Frontiers in Cognition, 1, 8. doi:10.3389/fpsyg.2010.00008.

    Google Scholar 

  • Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 13–34.

    Article  PubMed  Google Scholar 

  • Davies, D. R., Shackleton, V. J., & Parasuraman, R. (1983). Monotony and boredom. In G. R. J. Hockey (Ed.), Stress and fatigue in human performance. (pp. 1–32). New York: Wiley.

    Google Scholar 

  • Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72, 1120−1129.

    Google Scholar 

  • Dorval, M., & Pepin, M. (1986). Effect of playing a video game on a measure of spatial visualization. Perceptual and Motor Skills, 62, 159−162.

    Google Scholar 

  • Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321–326.

    Article  PubMed  Google Scholar 

  • De Lisi, R., & Cammarano, D. M. (1996). Computer experience and gender differences in undergraduate mental rotation performance. Computers in Human Behavior, 12(3), 351−361.

    Google Scholar 

  • De Lisi, R.., & Wolford, J. L. (2002). Improving children’s mental rotation accuracy with computer game playing. The Journal of Generic Psychology, 16(3), 272−282.

    Google Scholar 

  • Eckstein, M. (2011). Visual search: A retrospective. Journal of Vision, 11(5), 14, 1–36.

    Article  PubMed  Google Scholar 

  • Egglin, T. K., & Feinstein, A. R. (1996). Context bias: A problem in diagnostic radiology. The Journal of the American Medical Association, 276, 1752–1755.

    Article  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007) Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336–353.

    Article  PubMed  Google Scholar 

  • Fahle, M., & Edelman, S. (1993). Long term learning in vernier acuity: Effects of stimulus orientation, range and of feedback. Vision Research, 33, 397–412.

    Article  Google Scholar 

  • Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing. Pavlovian Journal Biological Science, 15, 177.

    Google Scholar 

  • Fiorentini, A., & Berardi, N. (1981). Learning in grating waveform discrimination: Specificity for orientation and spatial frequency. Vision Research, 21(7), 1149–1158.

    Article  PubMed  Google Scholar 

  • Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18, 943–947.

    Article  PubMed  Google Scholar 

  • Fleck, M.S., Samei, E., & Mitroff, S.R. (2010). Generalized ‘satisfaction of search’: Adverse influences on dual-target search accuracy. Journal of Experimental Psychology: Applied, 16, 60–71.

    Article  PubMed  Google Scholar 

  • Franconeri, S. L., Hollingworth, A., & Simons, D. J. (2005). Do new objects capture attention? Psychological science, 16(4), 275–281.

    Article  PubMed  Google Scholar 

  • Franken, E.A. Jr., Berbaum, K.S., Lu, C.H., Kanam, Dorfman, D.D., Warnock, N.G., Simonson, T.M., & Pelsang, R.E. (1994). Satisfaction of search in the detection of plain-film abnormalities in abdominal contrast studies. Investigative Radiology, 4, 403–9.

    Google Scholar 

  • Godwin, H. J., Menneer, T., Cave, K. R., & Donnelly, N. (2010). Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition, 18(10), 1439–1463.

    Article  Google Scholar 

  • Gould, J. D., & Carn, R. (1973). Visual search, complex backgrounds, mental counters, and eye movements. Perception and Psychophysics, 14, 125–132.

    Article  Google Scholar 

  • Gur, D., Rockette, H. E., Armfield, D. R., Blachar, A., Bogan, J. K., & Brancatelli, G. (2003). The prevalence effect in a laboratory environment. Radiology, 228, 10–14.

    Article  Google Scholar 

  • Gür, E., Turhan, P., Can, G., Akkus, S., Sever, L., Güzelöz, S., Çifçili, S. & Arvas, A. (2004). Enuresis: Prevalence, risk factors and urinary pathology among school children in Istanbul, Turkey. Pediatrics International, 46, 58–63.

    Article  PubMed  Google Scholar 

  • Gur, D., Bandos, A. I., Fuhrman, C. R., Klym, A. H., King, J. L., & Rockette, H. E. (2007). The prevalence effect in a laboratory environment: Changing the confidence ratings. Academic Radiology, 14(1), 49–53.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game play modifies visual selective attention. Nature, 423, 534−537.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2006a). Effects of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32, 1465−1478.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2006b). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101(1), 217−245.

    Google Scholar 

  • Green, C. S., & Bavelier, D. (2007). Action video game experience alters the spatial resolution of vision. Psychological Science, 18, 88−94.

    Google Scholar 

  • Griffith, J. L., Voloschin, P., & Gibb, G. D. (1983). Differences in eye-hand motor coordination of video-game users and non-users. Perceptual and Motor Skills, 57(1), 155−158.

    Google Scholar 

  • Grillon, C., Morgan, C. A., Ill, Davis, M., & Southwick, S. M. (1998). Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biological Psychiatry, 44, 1027–1036.

    Google Scholar 

  • Grillon, C., Baas, J. P., Lissek, S., Smith, K., & Milstein, J.(2004). Anxious responses to predictable and unpredictable aversive events. Behavioral Neuroscience. 118, 916–924.

    Article  PubMed  Google Scholar 

  • Hickey, C., & Theeuwes, J. (2008). ERP correlates of inter-trial effects in visual search. Journal of Vision, 8, 6. (Abstract)

    Google Scholar 

  • Hubert-Wallander, B., Green, C. S., & Bavelier, D. (2010). Stretching the limits of visual attention: The case of action video games. WIREs Cognitive Science, Wiley, 1, 1−9.

    Google Scholar 

  • Kaplan, I. T., & Carvellas, T. (1965). Scanning for multiple targets, Perceptual and Motor Skills, 21, 239–243.

    Article  PubMed  Google Scholar 

  • Karle, J. W., Watter, S., & Shedden, J. M. (2010). Task switching in video game players: Benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134(1), 70−78.

    Google Scholar 

  • Karni, A., & Sagi, D. (1991) Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences USA, 88, 4966–4970.

    Article  Google Scholar 

  • Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365, 250–252.

    Article  PubMed  Google Scholar 

  • Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20, 245–251.

    Article  PubMed  Google Scholar 

  • Klein, R. M., Gadbois, S., & Christie, J. J. (2004). Perception and detection of counterfeit currency in Canada: Note quality, trainng and security features. Proc. SPIE, V. 5310. Rudolf L. van Renesse; (Ed.), Optical Security and Counterfeit Deterrence Techniques Vol. 1–12.

    Google Scholar 

  • Kokich, V. O., Jr., Kiyak, H. A., & Shapiro, P. A. (1999). Comparing the perception of dentists and lay people to altered dental esthetics. Journal of Esthetic Dentistry, 11, 311–324.

    Article  PubMed  Google Scholar 

  • Koopman, B. O. (1956a). The theory of search: I. Kinematic bases. Operations Research, 4(3), 324–346.

    Google Scholar 

  • Koopman, B. O. (1956b). The theory of search: II. Target detection. Operations Research, 4(5), 503–531.

    Article  Google Scholar 

  • Koopman, B. O. (1957). The theory of search: III. The optimum distribution of search effort. Operations Research, 5(5), 613–626.

    Article  Google Scholar 

  • Körner, C., & Gilchrist, I. D. (2008). Memory processes in multiple-target visual search. Psychological Research, 72, 99–105. doi:10.1007/s00426-006-0075-1.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á., Sigurjónsdóttir, Ó., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception & Psychophysics, 72, 1229−1236.

    Google Scholar 

  • Krueger, L. E., & Shapiro, R. G. (1980). Repeating the target neither speeds nor slows its detection: Evidence for independent channels in letter processing. Perception & Psychophysics, 28, 68–76.

    Article  Google Scholar 

  • Kundel, H. L. (1989). Perception errors in chest radiology. Semester Respiratory Therapy, 10, 203–210.

    Google Scholar 

  • Kundel, H. L., Nodine, C. F., & Carmody, D. (1978). Visual scanning, pattern recognition, and decision-making in pulmonary nodule detection. Investigative Radiology, 13, 175–181.

    Article  PubMed  Google Scholar 

  • Lang, P. J., Bradley, M. M. (2009). Emotion and the motivational brain. Biological Psychology, 84(3), 437–450.

    Article  PubMed  Google Scholar 

  • Lau, J. S., Huang, L. (2010). The prevalence effect is determined by past experience, not future prospects. Vision Research, 50(15), 1469–1474.

    Article  PubMed  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12, 549−551.

    Google Scholar 

  • Li, F-H., Cao, B-H., Xiao, F., & Li, H. (2011). The role of inhibitory control in the process of rare target detection. Acta Psychologica, 43(5), 509–518.

    Google Scholar 

  • Libera, C. D., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227.

    Article  PubMed  Google Scholar 

  • Madden, D. J., Mitroff, S. R., Shepler, A. M., Fleck, M. S., Costello, M. C., & Voss, A. (in press). Rare target search: Diffusion model analysis and effects of adult age.

    Google Scholar 

  • Madden, D. J. (2007). Aging and Visual Attention. Current Directions in Psychological Science. 16(2), 70–74.

    Article  PubMed  Google Scholar 

  • Mackworth, N. H. (1950). Researches on the measurement of human performance. Medical Research Council Special Report, London, Series 268.

    Google Scholar 

  • Matthews, N., & Welch, L. (1997). Velocity-dependent improvements in single-dot direction discrimination. Perception & Psychophysics, 59(1), 60–72.

    Article  Google Scholar 

  • McCarley, J. S., & Steelman, K. S. (2006). Elements of human performance in baggage x-ray screening. Proceedings of the 4th International Aviation Security Technology Symposium, Washington, DC.

    Google Scholar 

  • Metlay, W., Sokoloff, M., & Kaplan, I. T. (1970). Visual search for multiple targets. Journal of Experimental Psychology, 85, 148–150.

    Article  PubMed  Google Scholar 

  • Mitroff, S. R., & Hariri, A. (2010). Identifying predictive markers of field performance: The potential role of individual differences in threat sensitivity. Institute for Homeland Security Solutions Research Brief. https://www.ihssnc.org.

  • Mitroff, S. R., Friesen, P., Bennett, D., Yoo, H., & Reichow, A. (in press). Enhancing ice hockey skills through stroboscopic visual training.

    Google Scholar 

  • Mitroff, S. R., Biggs, A. T., Cain, M. S., Darling, E. F., Clark, K., Adamo, S. H., & Dowd, E. W. (2012). Visual search at the airport: Testing TSA officers. Poster presented at the annual meeting of the Vision Sciences Society, Naples, FL.

    Google Scholar 

  • Menneer, T., Barrett, D.J.K., Phillips, L., Donnelly, N., & Cave, K.R. (2004). Search efficiency for multiple targets. Cognitive Technology, 9, 22–25.

    Google Scholar 

  • Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2007). Costs in searching for two targets: Dividing search across target types could improve airport security screening. Applied Cognitive Psychology, 21(7), 915–932.

    Article  Google Scholar 

  • Menneer, T., Stroud, M.J., Cave, K.R., Donnelly, N., & Rayner, K. (2008). Eye movements in search for multiple targets. In K. Rayner, D. Shen, X. Bai, & G. Yan (Eds.), Cognitive and cultural influences on eye movements. Tianjin: Tianjin People’s Press

    Google Scholar 

  • Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: Effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15(2), 125–139.

    Article  PubMed  Google Scholar 

  • Navalakkam, V., Koch, C., & Perona, P. (2009). Homo Economicus in Visual Search. Journal of Vision, 9(1), 31, 1–16.

    Article  Google Scholar 

  • Murayama, K., & Kuhbandner, C. (2011). Money enhances memory consolidation—but only for boring material. Cognition, 119, 120–124.

    Google Scholar 

  • Murty, V. P., LaBar, K. S., Hamilton, D. A., Adcock, R. A. (2011). Is all motivation good for learning: Dissociable influences of approach and avoidance motivation in declarative memory. Learning and Memory, 18, 712–717.

    Article  PubMed  Google Scholar 

  • Nakayama, K., & Martini, P. (2010). Situating visual search. Vision Research. doi: 10.1016/j.visres.2010.09.003.

    Google Scholar 

  • Neider, M. B., Boot, W. R., & Kramer, A. F. (2010). Visual search for real world targets under conditions of high target-background similarity: Exploring training and transfer of training in older adults. Acta Psychologica, 134, 29–39.

    Article  Google Scholar 

  • Neisser, U. (1963). Decision time without reaction time: Experiments in visual scanning. American Journal of Psychology, 76, 376–385.

    Article  Google Scholar 

  • Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Neisser, U., Novick, R., & Lazar, R. (1963). Searching for ten targets simultaneously. Perceptual and Motor Skills, 17, 955–961.

    Article  PubMed  Google Scholar 

  • Nelson, R., & Strachan, I. (2009). Action and puzzle video games prime different speed/accuracy tradeoffs. Perception, 38(11), 1678−1687.

    Google Scholar 

  • Nodine, C. F., & Kundel, H. L. (1987). The cognitive side of visual search in radiology. In J.K. O’Regan, & A. Levy-Schoen (Eds.), Eye movements: From physiology to cognition (pp. 573–582). North Holland: Elsevier Science Publishers B. V.

    Google Scholar 

  • Ohl, R., Roedel, A., Binder, E., & Holsboer, F. (2003). Impact of high and low anxiety on cognitive performance in a modified hole board test in C57BL/6 & DBA/2 mice. European Journal Neuroscience, 17(1), 128–136.

    Article  Google Scholar 

  • Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15(1), 33−58.

    Google Scholar 

  • Orosy-Filders, C., & Allan, R. W. (1989). Psychology of computer use: XII. Video-game play: Human reaction-time to visual-stimuli. Perceptual and Motor Skills, 69(1), 243−247.

    Google Scholar 

  • Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Research, 40, 1227–1268.

    Article  PubMed  Google Scholar 

  • Parasuraman, R., & Davies, D. R. (1976). Decision-theory analysis of response latencies in vigilance. Journal of Experimental Psychology: Human Perception and Performance, 2(4), 578–590.

    Article  PubMed  Google Scholar 

  • Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018–1021.

    Article  PubMed  Google Scholar 

  • Poulton, E. (1890). The colours of animals: Their meaning of object recognition and use especially considered in the case of insects (pp. 360). London: Kegan Paul.

    Google Scholar 

  • Quaiser-Pohl, C., Geiser, C., & Lehmann, W. (2006). The relationship between computer-game preference, gender, and mental-rotation ability. Personality and Individual Differences, 44(3), 609−619.

    Google Scholar 

  • Ramachandran, V. S., & Braddick, O. (1973). Orientation-specific learning in stereopsis. Perception, 2(3), 371–376.

    Article  PubMed  Google Scholar 

  • Renfrew, D.L., Franken, E.A. Jr., Berbaum, K.S., Weigelt, F.H., & Abu-Yousef, M.M. (1992). Error in radiology: Classification and lessons in 182 cases presented at a problem case conference. Radiology, 183, 145–150.

    PubMed  Google Scholar 

  • Rhudy, J. L., & Meagher, M. W. (2000). Fear and anxiety: Divergent effects on human pain thresholds. Pain, 84(1), 65–75.

    Article  PubMed  Google Scholar 

  • Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8, 1–17.

    Article  Google Scholar 

  • Rosser, J. C., Lynch, P. J. Haskamp, L., Gentile, D. A., & Yalif, A. (2007). The impact of video games in surgical training. Archives of Surgery, 142, 181–186.

    Article  PubMed  Google Scholar 

  • Rubenstein, J. (2001). (Ed.) Test and evaluation plan: X-ray image screener selection test. Washington, DC: Office of Aviation Research.

    Google Scholar 

  • Saarinen, J., & Levi, D. M. (1995). Perceptual learning in vernier acuity: What is learned? Vision Research, 35(4), 519–527.

    Article  PubMed  Google Scholar 

  • Samuel, S., Kundel, H.L., Nodine, C.F., & Toto, L.C. (1995). Mechanisms of satisfaction of search: Eye position recordings in the reading of chest radiographs. Radiology, 194, 895–902.

    PubMed  Google Scholar 

  • Schneider, W., & Shriffin, R.M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention, II: Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 1–66.

    Article  Google Scholar 

  • Schwaninger, A. (2003a). Reliable measurements of threat detection. Airport, 1, 22–23.

    Google Scholar 

  • Schwaninger, A. (2003b). Evaluation and selection of airport security screeners. Airport, 2, 14–15.

    Google Scholar 

  • Schwaninger, A. (2006a). Threat image projection: Enhancing performance? Aviation Security International, December 2006, 36–41.

    Google Scholar 

  • Schwaninger, A. (2006b). Liquid identification: Reacting to the terror threat. Analysing, controlling and adapting to meet new threats. Airport, 5, 30–31.

    Google Scholar 

  • Schwaninger, A. (2006c). Airport security human factors: From the weakest to the strongest link in airport security screening. Proceedings of the 4th International Aviation Security Technology Symposium, Washington, D.C., USA, November 27–December 1, 2006, 265–270.

    Google Scholar 

  • Schwaninger, A. & Hofer, F. (2004). Evaluation of CBT for increasing threat detection performance in X-ray screening. In: K. Morgan, & M. J. Spector, The Internet Society 2004, Advances in Learning, Commerce and Security (pp. 147–156). Wessex: WIT Press.

    Google Scholar 

  • Schwaninger, A., & Wales, A.W.J. (2009). One year later: How screener performance improves in x-ray luggage search with computer-based training. Proceedings of the Ergonomics Society Annual Conference 2009, 381–389.

    Google Scholar 

  • Schwaninger, A., Hardmeier, D., & Hofer, F. (2005). Aviation security screeners visual abilities & visual knowledge measurement. IEEE Aerospace and Electronic Systems, 20(6), 29–35.

    Google Scholar 

  • Sireteanu, R., & Rettenbach, R. (1995). Perceptual learning in visual searches generalizes over tasks, locations, and eyes. Vision Research, 40, 2902–2949.

    Google Scholar 

  • Smith, T. Q., & Mitroff, S. R. (in press). Stroboscopic training enhances anticipatory timing.

    Google Scholar 

  • Terlecki, M. S., & Newcombe, N. S. (2005). How important is the digital divide? The relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles, 53, 433–441.

    Article  Google Scholar 

  • Tinbergen, N. (1960). The natural control of insects in pine woods: Vol. I. Factors influencing the intensity of predation by songbirds. Archives Neelandaises de Zoologie, 13, 265–343.

    Article  Google Scholar 

  • Townsend, J. T. (1990). Serial and parallel processing: Sometimes they look like Tweedledum and Tweedledee but that can (and should) be distinguished. Psychological Science, 1, 46–54.

    Article  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society, Series B, 353, 1295–1306.

    Google Scholar 

  • Tuddenham, W. J. (1962). Visual search, image organization, and reader error in roentgen diagnosis: Studies of the psycho-physiology of roentgen image perception. Radiology, 78, 694–704.

    PubMed  Google Scholar 

  • Van Wert, M. J, Horowitz, T. S., Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention Perception & Psychophysics, 71(3), 541–553.

    Article  Google Scholar 

  • Vogels, R., & Orban, G. A. (1985). The effect of practice on the oblique effect in line orientation judgments. Vision Research, 25(11), 1679–1687.

    Article  PubMed  Google Scholar 

  • von Bastian, C. C., Schwaninger, A., & Michel, S. (2008). Do multiview X-ray systems improve X-ray image interpretation in airport security screening? Zeitschrift für Arbeitswissenschaft, 3, 166–17.

    Google Scholar 

  • Vreven, D., & Blough, P. M. (1998). Searching for one or many targets: Effects of extended experience on the runs advantage. Journal of Experimental Psychology: Animal Behavior Processes, 24, 98–105.

    Article  Google Scholar 

  • West, G. L., Stevens, S. S., Pun, C., & Pratt, J. (2008). Visuospatial experience modulates attentional capture: Evidence from action video game players. Journal of Vision, 8, 1–9.

    Article  PubMed  Google Scholar 

  • Westheimer, G., McKee, S. P. (1978). Stereoscopic acuity for moving retinal images. Journal of Optical Society of America, 68, 450–455.

    Article  Google Scholar 

  • Wiegmann, D., McCarley, J. S., Kramer, A. F., & Wickens, C. D. (2006). Age and automation interact to influence performance of a simulated luggage screening task. Aviation, Space, and Environmental Medicine, 77, 825–831.

    Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.

    Article  Google Scholar 

  • Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention. (pp. 13–73). East Sussex, UK: Psychology.

    Google Scholar 

  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. Gray (Ed.), Integrated models of cognitive systems. (pp. 99–119). New York: Oxford.

    Google Scholar 

  • Wolfe, J. M., & Gancarz, G. (1996). Guided search 3.0: Basic and clinical applications of vision science (pp. 189–192), Dordrecht: Kluwer Academic.

    Google Scholar 

  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 1–7.

    Article  Google Scholar 

  • Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439–440.

    Article  Google Scholar 

  • Wolfe, J. M., & Van Wert, M. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20, 121–124.

    Article  PubMed  Google Scholar 

  • Yantis, S., & Jonides, J. (1996). Attentional capture by abrupt onsets: New perceptual objects or visual masking. Journal of Experimental Psychology: Human Perception and Performance, 22(6), 1505–1513.

    Article  PubMed  Google Scholar 

  • Yuji, H. (1996). Computer games and information-processing skills. Perceptual and Motor Skills, 83, 643–647.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kait Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, K., Cain, M., Adamo, S., Mitroff, S. (2012). Overcoming Hurdles in Translating Visual Search Research Between the Lab and the Field. In: Dodd, M., Flowers, J. (eds) The Influence of Attention, Learning, and Motivation on Visual Search. Nebraska Symposium on Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4794-8_7

Download citation

Publish with us

Policies and ethics