Skip to main content

Post-transcriptional Stimulation of Gene Expression by MicroRNAs

  • Chapter
  • First Online:
Ten Years of Progress in GW/P Body Research

Part of the book series: Advances in Experimental Medicine and Biology ((volume 768))

Abstract

MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3′-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3′ and 5′-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adinolfi S, Ramos A, Martin SR, Dal PF, Pucci P, Bardoni B, Mandel JL, Pastore A (2003) The N-terminus of the fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding. Biochemistry 42:10437–10444

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Phillips K, Stoecklin G, Kedersha N (2004) Post-transcriptional regulation of proinflammatory proteins. J Leukoc Biol 76:42–47

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Phan L, Valasek L, Schoenfeld LW, Shalev A, Clayton J, Nielsen K, Donahue TF, Hinnebusch AG (2001) A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition. Cold Spring Harb Symp Quant Biol 66:403–415

    Article  PubMed  CAS  Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    Article  PubMed  CAS  Google Scholar 

  • Atasoy U, Watson J, Patel D, Keene JD (1998) ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J Cell Sci 111(Pt 21):3145–3156

    PubMed  CAS  Google Scholar 

  • Auerbach BD, Bear MF (2010) Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J Neurophysiol 104:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24:904–915

    Article  PubMed  CAS  Google Scholar 

  • Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–D114

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 64:871–884

    Article  PubMed  CAS  Google Scholar 

  • Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237

    Article  PubMed  CAS  Google Scholar 

  • Bechara EG, Didiot MC, Melko M, Davidovic L, Bensaid M, Martin P, Castets M, Pognonec P, Khandjian EW, Moine H, Bardoni B (2009) A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 7:e16

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Beilharz TH, Humphreys DT, Clancy JL, Thermann R, Martin DI, Hentze MW, Preiss T (2009) microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 4:e6783

    Article  PubMed  CAS  Google Scholar 

  • Beitzinger M, Meister G (2010) Preview. MicroRNAs: from decay to decoy. Cell 140:612–614

    Article  PubMed  CAS  Google Scholar 

  • Bethune J, Artus-Revel CG, Filipowicz W (2012) Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13(8):716–723

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145:5452–5458

    Article  PubMed  CAS  Google Scholar 

  • Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58:266–277

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Brewer G (2002) Messenger RNA decay during aging and development. Ageing Res Rev 1:607–625

    Article  PubMed  CAS  Google Scholar 

  • Brook M, Smith JW, Gray NK (2009) The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 137:595–617

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Carrera P, Johnstone O, Nakamura A, Casanova J, Jackle H, Lasko P (2000) VASA mediates ­translation through interaction with a Drosophila yIF2 homolog. Mol Cell 5:181–187

    Article  PubMed  CAS  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    Article  PubMed  CAS  Google Scholar 

  • Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG, Guo Y, Tenaglia E, Xu C, Gish G, Min J, Pawson T (2009) Mouse PIWI interactome identifies binding mechanism of TDRKH Tudor domain to arginine methylated MIWI. Proc Natl Acad Sci U S A 106:20336–20341

    Article  PubMed  CAS  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  PubMed  CAS  Google Scholar 

  • Chico TJ, Milo M, Crossman DC (2010) The genetics of cardiovascular disease: new insights from emerging approaches. J Pathol 220:186–197

    PubMed  CAS  Google Scholar 

  • Cho-Chung YS, Nesterova MV (2005) Tumor reversion: protein kinase A isozyme switching. Ann N Y Acad Sci 1058:76–86

    Article  PubMed  CAS  Google Scholar 

  • Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:e83

    Article  PubMed  CAS  Google Scholar 

  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710

    PubMed  CAS  Google Scholar 

  • Corey DR (2005) Regulating mammalian transcription with RNA. Trends Biochem Sci 30:655–658

    Article  PubMed  CAS  Google Scholar 

  • Costa Y, Speed RM, Gautier P, Semple CA, Maratou K, Turner JM, Cooke HJ (2006) Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet 15:2324–2334

    Article  PubMed  CAS  Google Scholar 

  • de Moor CH, Meijer H, Lissenden S (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin Cell Dev Biol 16:49–58

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) MIWI, a murine homolog of PIWI, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    Article  PubMed  CAS  Google Scholar 

  • Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Diederichs S, Jung S, Rothenberg SM, Smolen GA, Mlody BG, Haber DA (2008) Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proc Natl Acad Sci U S A 105:9284–9289

    Article  PubMed  CAS  Google Scholar 

  • Ding XC, Grosshans H (2009) Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ding XC, Slack FJ, Grosshans H (2008) The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 7:3083–3090

    Article  PubMed  CAS  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2010) Emerging roles for natural microRNA sponges. Curr Biol 20:R858–R861

    Article  PubMed  CAS  Google Scholar 

  • Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    Article  PubMed  CAS  Google Scholar 

  • Espel E (2005) The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 16:59–67

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CY, Shyu AB, Yates JR III, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35:868–880

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sundermeier TR, Sonenberg N (2010) Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol 50:1–20

    Article  PubMed  CAS  Google Scholar 

  • Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes. Biol Reprod 82:1008–1017

    Article  PubMed  CAS  Google Scholar 

  • Friedman DL (1976) Role of cyclic nucleotides in cell growth and differentiation. Physiol Rev 56:652–708

    PubMed  CAS  Google Scholar 

  • Frohlich KS, Vogel J (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12:674–682

    Article  PubMed  CAS  Google Scholar 

  • Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    Article  PubMed  CAS  Google Scholar 

  • Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (2008) MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 36:6318–6332

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, McCullen CA, Guillier M, Vanderpool CK, Majdalani N, Benhammou J, Thompson KM, FitzGerald PC, Sowa NA, FitzGerald DJ (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gray NK, Wickens M (1998) Control of translation initiation in animals. Annu Rev Cell Dev Biol 14:399–458

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Beyret E, Wang Z, Lin H (2006a) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Grivna ST, Pyhtila B, Lin H (2006b) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A 103:13415–13420

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  CAS  Google Scholar 

  • Harris AN, Macdonald PM (2001) Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128:2823–2832

    PubMed  CAS  Google Scholar 

  • Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C, Junemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27:3300–3310

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2006) eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 31:553–562

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, Tang H, Meyuhas O (2001) Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. Cold Spring Harb Symp Quant Biol 66:477–484

    Article  PubMed  CAS  Google Scholar 

  • Hwang HW, Wentzel EA, Mendell JT (2009) Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A 106:7016–7021

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Tomari Y (2009) Argonaute-mediated translational repression (and activation). Fly (Austin) 3:204–206

    Google Scholar 

  • Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34:58–67

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  PubMed  CAS  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, Chan EK (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Zhu JK (2010) A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes. Genes Dev 24:853–856

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    Article  PubMed  CAS  Google Scholar 

  • Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA (2010) Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol 17:238–240

    Article  PubMed  CAS  Google Scholar 

  • Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4:77–85

    Article  PubMed  CAS  Google Scholar 

  • Kedde M, Agami R (2008) Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle 7:899–903

    Article  PubMed  CAS  Google Scholar 

  • Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R (2010) A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Yamaguchi S, Carthew RW (2002) RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 16:1884–1889

    Article  PubMed  CAS  Google Scholar 

  • Khabar KS (2005) The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 25:1–10

    Article  PubMed  CAS  Google Scholar 

  • Khabar KS, Bakheet T, Williams BR (2005) AU-rich transient response transcripts in the human genome: expressed sequence tag clustering and gene discovery approach. Genomics 85:165–175

    Article  PubMed  CAS  Google Scholar 

  • Khandjian EW, Bardoni B, Corbin F, Sittler A, Giroux S, Heitz D, Tremblay S, Pinset C, Montarras D, Rousseau F, Mandel J (1998) Novel isoforms of the fragile X related protein FXR1P are expressed during myogenesis. Hum Mol Genet 7:2121–2128

    Article  PubMed  CAS  Google Scholar 

  • Khudayberdiev S, Fiore R, Schratt G (2009) MicroRNA as modulators of neuronal responses. Commun Integr Biol 2:411–413

    Article  PubMed  CAS  Google Scholar 

  • Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748

    Article  PubMed  CAS  Google Scholar 

  • Kirino Y, Vourekas A, Sayed N, de Lima AF, Thomson T, Lasko P, Rappsilber J, Jongens TA, Mourelatos Z (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16:70–78

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick LL, McIlwain KA, Nelson DL (2001) Comparative genomic sequence analysis of the FXR gene family: FMR1, FXR1, and FXR2. Genomics 78:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Minshull J, Ford C, Golsteyn R, Poon R, Hunt T (1991) On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis. J Cell Biol 114:755–765

    Article  PubMed  CAS  Google Scholar 

  • Kontoyiannis D, Kotlyarov A, Carballo E, Alexopoulou L, Blackshear PJ, Gaestel M, Davis R, Flavell R, Kollias G (2001) Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J 20:3760–3770

    Article  PubMed  CAS  Google Scholar 

  • Kozlov G, Safaee N, Rosenauer A, Gehring K (2010) Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem 285:13599–13606

    Article  PubMed  CAS  Google Scholar 

  • Kruys V, Beutler B, Huez G (1990) Translational control mediated by UA-rich sequences. Enzyme 44:193–202

    PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, Shiromoto Y, Asada N, Toyoda A, Fujiyama A, Totoki Y, Shibata T, Kimura T, Nakatsuji N, Noce T, Sasaki H, Nakano T (2010) MVH in piRNA processing and gene silencing of ­retrotransposons. Genes Dev 24:887–892

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Nakashima K, Warashina M, Taira K, Gage FH (2005) The NRSE smRNA specifies the fate of adult hippocampal neural stem cells. Nucleic Acids Symp Ser (Oxf) (49):87–88

    Google Scholar 

  • Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    Article  PubMed  CAS  Google Scholar 

  • Le Quesne JP, Spriggs KA, Bushell M, Willis AE (2010) Dysregulation of protein synthesis and disease. J Pathol 220:140–151

    PubMed  Google Scholar 

  • Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342

    Article  PubMed  CAS  Google Scholar 

  • Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, Chan EK (2008) Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J Cell Sci 121:4134–4144

    Article  PubMed  CAS  Google Scholar 

  • Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EK (2009) The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15:804–813

    Article  PubMed  CAS  Google Scholar 

  • Lin CC, Liu LZ, Addison JB, Wonderlin WF, Ivanov AV, Ruppert JM (2011) A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context. Mol Cell Biol 31:2513–2527

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR III, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1161–1166

    Article  CAS  Google Scholar 

  • Liu N, Han H, Lasko P (2009) Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev 23:2742–2752

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420

    Article  PubMed  CAS  Google Scholar 

  • Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905

    Article  PubMed  CAS  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X (2010a) MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol 184:6053–6059

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010b) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74

    Article  PubMed  CAS  Google Scholar 

  • Mazan-Mamczarz K, Galban S, De Silanes IL, Martindale JL, Atasoy U, Keene JD, Gorospe M (2003) RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A 100:8354–8359

    Article  PubMed  CAS  Google Scholar 

  • Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894

    Article  PubMed  CAS  Google Scholar 

  • Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2:521–529

    Article  PubMed  CAS  Google Scholar 

  • Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267:6321–6330

    Article  PubMed  CAS  Google Scholar 

  • Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW (2012) PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 19:603–608

    Article  PubMed  CAS  Google Scholar 

  • Mortensen RD, Serra M, Steitz JA, Vasudevan S (2011) Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci U S A 108:8281–8286

    Article  PubMed  CAS  Google Scholar 

  • Motlik J, Kubelka M (1990) Cell-cycle aspects of growth and maturation of mammalian oocytes. Mol Reprod Dev 27:366–375

    Article  PubMed  CAS  Google Scholar 

  • Murphy AJ, Guyre PM, Pioli PA (2010) Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 184:5029–5037

    Article  PubMed  CAS  Google Scholar 

  • Nakahara K, Kim K, Sciulli C, Dowd SR, Minden JS, Carthew RW (2005) Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci U S A 102:12023–12028

    Article  PubMed  CAS  Google Scholar 

  • Niepmann M (2009) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8:1473–1477

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249

    Article  PubMed  CAS  Google Scholar 

  • Nishida KM, Saito K, Mori T, Kawamura Y, Nagami-Okada T, Inagaki S, Siomi H, Siomi MC (2007) Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA 13:1911–1922

    Article  PubMed  CAS  Google Scholar 

  • Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  PubMed  CAS  Google Scholar 

  • Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y (2003) Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 130:2495–2503

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  CAS  Google Scholar 

  • Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:70–83

    Article  PubMed  CAS  Google Scholar 

  • Pelech SL, Sanghera JS, Daya-Makin M (1990) Protein kinase cascades in meiotic and mitotic cell cycle control. Biochem Cell Biol 68:1297–1330

    Article  PubMed  CAS  Google Scholar 

  • Peng SS, Chen CY, Xu N, Shyu AB (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J 17:3461–3470

    Article  PubMed  CAS  Google Scholar 

  • Pepper AS, Beerman RW, Bhogal B, Jongens TA (2009) Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects. PLoS One 4:e7618

    Article  PubMed  CAS  Google Scholar 

  • Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Radford HE, Meijer HA, de Moor CH (2008) Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta 1779:217–229

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:REVIEWS1017

    Google Scholar 

  • Richter JD (2008) Breaking the code of polyadenylation-induced translation. Cell 132:335–337

    Article  PubMed  CAS  Google Scholar 

  • Robins H, Press WH (2005) Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs. Proc Natl Acad Sci U S A 102:15557–15562

    Article  PubMed  CAS  Google Scholar 

  • Roy AL, Chakrabarti D, Datta B, Hileman RE, Gupta NK (1988) Natural mRNA is required for directing Met-tRNA(f) binding to 40S ribosomal subunits in animal cells: involvement of Co-eIF-2A in natural mRNA-directed initiation complex formation. Biochemistry 27:8203–8209

    Article  PubMed  CAS  Google Scholar 

  • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Schiavone N, Rosini P, Quattrone A, Donnini M, Lapucci A, Citti L, Bevilacqua A, Nicolin A, Capaccioli S (2000) A conserved AU-rich element in the 3′ untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis. FASEB J 14:174–184

    PubMed  CAS  Google Scholar 

  • Schier AF (2007) The maternal-zygotic transition: death and birth of RNAs. Science 316:406–407

    Article  PubMed  CAS  Google Scholar 

  • Schorl C, Sedivy JM (2007) Analysis of cell cycle phases and progression in cultured mammalian cells. Methods 41:143–150

    Article  PubMed  CAS  Google Scholar 

  • Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  • Seal R, Temperley R, Wilusz J, Lightowlers RN, Chrzanowska-Lightowlers ZM (2005) Serum-deprivation stimulates cap-binding by PARN at the expense of eIF4E, consistent with the observed decrease in mRNA stability. Nucleic Acids Res 33:376–387

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani GD, Galeazzi M (2009) Infection—genetics relationship in systemic lupus erythematosus. Lupus 18:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Tschudi C, Ullu E (2007) Depletion of newly synthesized Argonaute1 impairs the RNAi response in Trypanosoma brucei. RNA 13:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Zhang Y, Siomi H, Dreyfuss G (1996) Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol 16:3825–3832

    PubMed  CAS  Google Scholar 

  • Siomi MC, Higashijima K, Ishizuka A, Siomi H (2002) Casein kinase II phosphorylates the fragile X mental retardation protein and modulates its biological properties. Mol Cell Biol 22:8438–8447

    Article  PubMed  CAS  Google Scholar 

  • Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  PubMed  CAS  Google Scholar 

  • Sood P, Krek A, Zavolan M, Macino G, Rajewsky N (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103:2746–2751

    Article  PubMed  CAS  Google Scholar 

  • Spassov DS, Jurecic R (2003) The PUF family of RNA-binding proteins: does evolutionarily conserved structure equal conserved function? IUBMB Life 55:359–366

    Article  PubMed  CAS  Google Scholar 

  • Stitt-Cavanagh E, MacLeod L, Kennedy C (2009) The podocyte in diabetic kidney disease. ScientificWorldJournal 9:1127–1139

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139

    Article  PubMed  CAS  Google Scholar 

  • Taieb F, Thibier C, Jessus C (1997) On cyclins, oocytes and eggs. Mol Reprod Dev 48:397–411

    Article  PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  PubMed  CAS  Google Scholar 

  • Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93:139–149

    Article  PubMed  CAS  Google Scholar 

  • Triboulet R, Gregory RI (2010) Pumilio turns on microRNA function. Nat Cell Biol 12:928–929

    Article  PubMed  CAS  Google Scholar 

  • Tsai NP, Lin YL, Wei LN (2009) MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424:411–418

    Article  PubMed  CAS  Google Scholar 

  • Tserel L, Runnel T, Kisand K, Pihlap M, Bakhoff L, Kolde R, Peterson H, Vilo J, Peterson P, Rebane A (2011) MicroRNA expression profiles of human blood monocyte-derived dendritic cells and macrophages reveal miR-511 as putative positive regulator of Toll-like receptor 4. J Biol Chem 286:26487–26495

    Article  PubMed  CAS  Google Scholar 

  • Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, Lin H (2009) MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284:6507–6519

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Seli E, Steitz JA (2006) Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes Dev 20:138–146

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2008) Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7:1545–1549

    Article  PubMed  CAS  Google Scholar 

  • von RC, Gallouzi IE (2008) Decoding ARE-mediated decay: is microRNA part of the equation? J Cell Biol 181:189–194

    Article  CAS  Google Scholar 

  • Wang W, Fan J, Yang X, Furer-Galban S, Lopez de Silanes I, von Kobbe C, Guo J, Georas SN, Foufelle F, Hardie DG, Carling D, Gorospe M (2002) AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 22:3425–3436

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Saxe JP, Tanaka T, Chuma S, Lin H (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19:640–644

    Article  PubMed  CAS  Google Scholar 

  • Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F, Base CK, Greenough WT (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci U S A 101:17504–17509

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm JE, Smibert CA (2005) Mechanisms of translational regulation in Drosophila. Biol Cell 97:235–252

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28:182–188

    Article  PubMed  CAS  Google Scholar 

  • Wilson JE, Connell JE, Macdonald PM (1996) aubergine enhances oskar translation in the Drosophila ovary. Development 122:1631–1639

    PubMed  CAS  Google Scholar 

  • Wilusz CJ, Wilusz J (2004) Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet 20:491–497

    Article  PubMed  CAS  Google Scholar 

  • Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103:4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2008) Importance of translation and nonnucleolytic ago proteins for on-target RNA interference. Curr Biol 18:1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB (2004) The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Curr Biol 14:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EK (2004) GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117:5567–5578

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Duan R, Chen D, Wang J, Chen D, Jin P (2007) Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Hum Mol Genet 16:1814–1820

    Article  PubMed  CAS  Google Scholar 

  • Zekri L, Huntzinger E, Heimstadt S, Izaurralde E (2009) The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 29:6220–6231

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, O’Connor JP, Siomi MC, Srinivasan S, Dutra A, Nussbaum RL, Dreyfuss G (1995) The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. EMBO J 14:5358–5366

    PubMed  CAS  Google Scholar 

  • Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W (2009) Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15:781–793

    Article  PubMed  CAS  Google Scholar 

  • Zou C, Zhang Z, Wu S, Osterman JC (1998) Molecular cloning and characterization of a rabbit eIF2C protein. Gene 211:187–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Vasudevan laboratory, C. Fehr, M. Niepmann and M. Ruppert for their helpful comments and discussions and M. Serra for the figures. The authors’ research is supported by a CRI investigator and the D. and M-E Ryder awards to S.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha Vasudevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, S., Vasudevan, S. (2013). Post-transcriptional Stimulation of Gene Expression by MicroRNAs. In: Chan, E., Fritzler, M. (eds) Ten Years of Progress in GW/P Body Research. Advances in Experimental Medicine and Biology, vol 768. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5107-5_7

Download citation

Publish with us

Policies and ethics