Skip to main content

2013 | OriginalPaper | Buchkapitel

7. The Cayley–Hermite Problem and Matrix Algebra

verfasst von : Thomas Hawkins

Erschienen in: The Mathematics of Frobenius in Context

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Less than 2 years after Frobenius submitted his “monograph” on the problem of Pfaff, he submitted another monograph [181], in which he showed that bilinear forms in n variables (or equivalently, their coefficient matrices) form a linear associative algebra that can be represented symbolically and used to great advantage in solving linear algebraic problems. He was motivated to do so by a problem, called here the Cayley–Hermite problem, which had hitherto been treated on the generic level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Much of this chapter is based on my paper [270], where I first called attention to the historical importance of this problem.
 
2
In this respect, Cayley was astutely following the lead of Lagrange, whose treatment of the principal axes theorem 1775 (Section 4.​4.​1) involved such a replacement, which Cauchy then generalized to n variables in 1829 (Section 4.​4.​2).
 
3
For any invertible matrix M, \({M}^{-1} = 1/(\det M) \cdot {[\mathrm{Cof}(M)]}^{t}\), where Cof(M) denotes the matrix of cofactors, i.e., the (i, j) entry of Cof(M) is the cofactor corresponding to m ij . See the discussion following (4.​15).
 
4
The letter is located in the library of St. John’s College, Cambridge, along with others that passed between Cayley and Sylvester. I am grateful to Dr. I. Grattan-Guinness for calling my attention to the existence of these letters, to Prof. E. Koppelman for informing me of their content, and to the Masters and Fellows of St. John’s College for permission to make the above quotation.
 
5
Special cases of the theorem were presented by Hamilton in the context of his theory of quaternions [262, p. 567], but that theory does not appear to have been a major influence upon Cayley. Cayley himself denied any such influence in a polemical exchange with Tait [349, pp. 153, 164]. The absence of any mention of quaternions in his letter of 19 November 1857 supports his denial, as does our discussion of the role of the Cayley–Hermite problem.
 
6
If it did, then since all its characteristic roots are 0, we would have \(L = SM{S}^{-1}\), where detS ≠ 0, since M is the Jordan canonical form for this situation. But then \({L}^{2} = S{M}^{2}{S}^{-1} = 0\not =M\).
 
7
The same is true of Sylvester’s subsequent treatment of this problem, as I have shown in [270, §6].
 
8
Nowadays, Laguerre is remembered primarily because of the polynomials that bear his name. For a broader perspective on his life and work, see [16, 482].
 
9
Rosanes was later M. Born’s teacher at Breslau. According to Born, it was by recalling Rosanes’ lectures of 1903 on algebra and analytic geometry that he recognized the connection between Heisenberg’s new approach to quantum mechanics and matrix algebra. See Jammer [318, p. 204], who, however, incorrectly states that Rosanes was Frobenius’ student, although, as the following discussion indicates, Rosanes undoubtedly read, and was taught by, Frobenius’ 1878 paper.
 
10
That P t A P = A follows by elementary matrix algebra, which Rosanes, regrettably, lacked.
 
11
This follows from the more general result given by Frobenius that for a family u A + v A t , any elementary divisors of the form (u + v)2κ or \({(u - v)}^{2\kappa +1}\) occur doubled [181, p. 364, I]. (There is a typographical error in Frobenius’ paper (p. 22) that is only partially corrected in the collected works (p. 364).)
 
12
Frobenius used the notation P to denote the transpose of P.
 
13
Frobenius denoted the identity matrix by the letter E (for Einheit).
 
14
As Frobenius showed [181, §§1–2], p(A) and q(A) commute, and so p(A) and [q(A)]−1 commute.
 
16
For example, the canonical form \(J = J_{3}(2) \oplus J_{3}(1/2) \oplus J_{2}(-1)\) has elementary divisors in accord with Theorem 7.9. Hence all Rosanes transformations with elementary divisors (r − 2)3, \({(r - 1/2)}^{3}\), and (r + 1)2, are given by \(P = LJ{L}^{-1}\), where L is any invertible 7 ×7 matrix. To determine a bilinear form left invariant by P, use the fact that in general, P t is similar to P, and by Theorem 7.9, P is similar to P  − 1, which is similar to J  − 1. Thus P t is similar to J  − 1, and so \({P}^{t} = M{J}^{-1}M\) for some invertible M. It then follows that P leaves invariant the form \(F(x,y) = {x}^{t}Ay\), \(A = M{L}^{-1}\).
 
17
The above quotation is from Hermite’s paper in Crelle’s Journal [288, p. 309], which is restricted to ternary forms. German mathematicians, including Frobenius, were not familiar with Hermite’s solution for quadratic forms in n variables [287], published as it was in an obscure British journal. The n-variable solution contains nothing that was not already implied by the solution in the ternary case.
 
18
The formula for T says that \(S(I - U) = T(I + U)\), which may be rewritten as \(SU + TU = S - T\), i.e., \(U = {(S + T)}^{-1}(S - T)\).
 
19
This follows by writing Q in block form as \(Q = \left (\begin{array}{ccc} q_{1}q &\cdots &q_{n}q\\ \end{array} \right )\), from which it follows from \({q}^{t}(\mathrm{Adj}\,S)q = 1\) that Q(Adj S)Q = Q and so \(U_{0}^{2} = I_{n}\).
 
20
Thus, e.g., \(U = \left (\begin{array}{cccc} - 1 & 1 & 0 & 0 \\ 0 & - 1 & 0 & 0 \\ 0 & 0 & - 1 & 1 \\ 0 & 0 & 0 & - 1 \end{array} \right )\), which has (r + 1)2 as a repeated elementary divisor and satisfies U t SU = S for \(S = \left (\begin{array}{cccc} 0 & 0 & 0 & 1\\ 0 & 4 & - 1 & 2 \\ 0 & - 1 & 0 & 0 \\ 1 & 2 & 0 & 3 \end{array} \right )\), is a solution not covered by generalizing the formulas of Bachmann and Hermite.
 
21
Although Frobenius did not mention it, since det(I + U h ) → 0 implies that the coefficients of U will be bounded for \(\vert h\vert \leq \varepsilon\), the Bolzano–Weierstrass theorem, which he surely knew, would imply that a sequence h n  → 0 exists such that \(U_{0} =\lim _{n\rightarrow \infty }U_{h_{n}}\) exists.
 
22
As noted earlier, Frobenius did not use block multiplication of matrices. He knew that his symbols represented linear substitutions and coefficient matrices as well as bilinear forms, but the form interpretation was favored and so he worked with direct sums of forms to achieve the same results.
 
23
In detail: \(U = {G}^{-1}JG =\lim _{h\rightarrow 0}\{{G}^{-1}{(\tilde{S}+\tilde{T}_{h})}^{-1}[{({G}^{t})}^{-1}{G}^{t}](\tilde{S}-\tilde{T}_{h})G\} = {[{G}^{t}(\tilde{S}+\tilde{T}_{h})G]}^{-1}\times {G}^{t}(\tilde{S}-\tilde{T}_{h})G = {(S+T_{h})}^{-1}(S-T_{h})\).
 
24
This is (7.4), except T has been replaced by − T because Frobenius dealt with it in that (equivalent) form.
 
25
For every \(x\), \(\Vert Rx\Vert = \sqrt{Rx \cdot Rx} = \sqrt{x \cdot {R}^{t } Rx} = \sqrt{x \cdot x} =\Vert x\Vert\). If a is a characteristic root of R and \(x\not =0\) is such that \(Rx = ax\), then the above implies \(\vert a\vert \cdot \Vert x\Vert =\Vert Ux\Vert =\Vert x\Vert\), and so | a |  = 1.
 
26
Recall from the discussion surrounding (4.​36) that k is the largest order of a pole at r = a of a coefficient \(\varphi _{ij}(r)/\varphi (r)\) of \(\mathrm{Adj}(rI - R)/\det (rI - R) = {(rI - R)}^{-1}\).
 
27
Since \({(rI - R)}^{-1} =\mathrm{ Adj}(rI - R)/\det (rI - R)\; \mathop{=}\limits \mathrm{def}\;\varphi _{ij}(r)/\varphi (r)\), all the coefficients \(\varphi _{ij}(r)/\varphi (r)\) have poles of order at most 1 at r = a, i.e., if (r − a) q divides \(\varphi (r)\), then \({(r - a)}^{q-1}\) divides \(\varphi _{ij}(r)\) for all i, j. This means that D n − 1(r), the polynomial greatest common divisor of all the \(\varphi _{ij}(\lambda )\), is also divisible by \({(r - a)}^{q-1}\); and so \(\varphi (r)/D_{n-1}(r) = E_{n}(r) =\psi (r)\), the minimal polynomial of R, is the product of distinct linear factors. But from Weierstrass’ definition of elementary divisors, \(E_{n}(r) =\prod _{ i=1}^{d}{(r - a_{i})}^{e_{i}}\), where a 1, , a d are the distinct characteristic roots of R and \({(r - a)}^{e_{i}}\) is the elementary divisor for a i of maximal exponent. Hence all e i equal 1, and all elementary divisors are linear.
 
28
Frobenius used his calculational skill to derive (7.28) from (7.25). First be multiplied both sides of (7.25) by \(rR = {[{r}^{-1}{R}^{-1}]}^{-1}\) to get
$$\displaystyle{{({R}^{-1} - {r}^{-1}I)}^{-1} = {({R}^{t} - {r}^{-1})}^{-1} = rRA{(r - a)}^{-k} + \cdots \,.}$$
Now take the transpose of this equation to get
$$\displaystyle{{(R - {r}^{-1})}^{-1} = r{A}^{t}{R}^{t}{(r - a)}^{-k} + \cdots \,.}$$
So far, the assumption that r ∈ Γ has not been used, but now the complex conjugate of the above equation gives, since on Γ, \({r}^{-1} =\bar{ r}\) and \({(R - {r}^{-1})}^{-1} = -({r}^{-1}I - R) = -(\bar{r}I - R)\),
$$\displaystyle\begin{array}{rcl}{ (rI - R)}^{-1}& =& -{r}^{-1}\bar{{A}}^{t}{R}^{t}{({r}^{-1} - {a}^{-1})}^{-k} + \cdots \\ & =& -{r}^{-1}\bar{{A}}^{t}{R}^{t}{r}^{k}{r}^{-k}{({r}^{-1} - {a}^{-1})}^{-k}{a}^{-k}{a}^{k} + \cdots \\ & =& {(-1)}^{k-1}{r}^{k-1}{a}^{k}\bar{{A}}^{t}{R}^{t}{(r - a)}^{-k} + \cdots \,. {}\end{array}$$
(7.29)
Now expand \(f(r) = {r}^{k-1}\) in a power series about r = a to get \({r}^{k-1} = {a}^{k-1} + (k - 1){a}^{k-2}(r - a) + \cdots \) . If this expansion is substituted in (7.29), the result is (7.28), and Frobenius’ proof is completed.
 
29
See in this connection [267, pp. 245–248].
 
Literatur
10.
Zurück zum Zitat P. Bachmann. Untersuchungen über quadratische Formen. Jl. für die reine u. angew. Math., 76:331–341, 1873.MATHCrossRef P. Bachmann. Untersuchungen über quadratische Formen. Jl. für die reine u. angew. Math., 76:331–341, 1873.MATHCrossRef
16.
Zurück zum Zitat M. Bernkopf. Laguerre, Edmond Nicolas. In Dictionary of Scientific Biography, volume 7, pages 573–576. Charles Scribner’s Sons, New York, 1973. M. Bernkopf. Laguerre, Edmond Nicolas. In Dictionary of Scientific Biography, volume 7, pages 573–576. Charles Scribner’s Sons, New York, 1973.
41.
Zurück zum Zitat F. Brioschi. Note sur une théorème reatif aux déterminants gauches. Jl. de math. pures et appl., 19:253–256, 1854. F. Brioschi. Note sur une théorème reatif aux déterminants gauches. Jl. de math. pures et appl., 19:253–256, 1854.
68.
Zurück zum Zitat A. L. Cauchy. Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment. Journal de l’École Polytechnique, cah.17, t. 10:29ff., 1815. Reprinted in Oeuvres (2) 1, 91–169. A. L. Cauchy. Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment. Journal de l’École Polytechnique, cah.17, t. 10:29ff., 1815. Reprinted in Oeuvres (2) 1, 91–169.
79.
Zurück zum Zitat A. Cayley. On the motion of rotation of a solid body. Cambr. Math Journal, 3:224–232, 1843. Reprinted in Papers 1, 28–35. A. Cayley. On the motion of rotation of a solid body. Cambr. Math Journal, 3:224–232, 1843. Reprinted in Papers 1, 28–35.
80.
Zurück zum Zitat A. Cayley. Sur quelques propriétés des déterminants gauches. Jl. für die reine u. angew. Math., 32:119–123, 1846. Reprinted in Papers 1, 332–336. A. Cayley. Sur quelques propriétés des déterminants gauches. Jl. für die reine u. angew. Math., 32:119–123, 1846. Reprinted in Papers 1, 332–336.
82.
Zurück zum Zitat A. Cayley. Remarques sur la notation des fonctions algébriques. Jl. für die reine u. angew. Math., 50:282–285, 1855. Reprinted in Papers 2, 185–188. A. Cayley. Remarques sur la notation des fonctions algébriques. Jl. für die reine u. angew. Math., 50:282–285, 1855. Reprinted in Papers 2, 185–188.
83.
Zurück zum Zitat A. Cayley. Sur la transformation d’une fonction quadratique en elle-même par des substitutions linéaires. Jl. für die reine u. angew. Math., 50:288–299, 1855. Reprinted in Papers 2, 192–201. A. Cayley. Sur la transformation d’une fonction quadratique en elle-même par des substitutions linéaires. Jl. für die reine u. angew. Math., 50:288–299, 1855. Reprinted in Papers 2, 192–201.
84.
Zurück zum Zitat A. Cayley. A memoir on the theory of matrices. Phil. Trans. R. Soc. London, 148:17–37, 1858. Reprinted in Papers 2, 475–496. A. Cayley. A memoir on the theory of matrices. Phil. Trans. R. Soc. London, 148:17–37, 1858. Reprinted in Papers 2, 475–496.
85.
Zurück zum Zitat A. Cayley. A memoir on the automorphic linear transformation of a bipartite quadric function. Phil. Trans. R. Soc. London, 148:39–46, 1858. Reprinted in Papers 2, 497–505. A. Cayley. A memoir on the automorphic linear transformation of a bipartite quadric function. Phil. Trans. R. Soc. London, 148:39–46, 1858. Reprinted in Papers 2, 497–505.
86.
Zurück zum Zitat A. Cayley. A supplementary memoir on the theory of matrices. Phil. Trans. R. Soc. London, 156:438–48, 1866. Reprinted in Papers 5. A. Cayley. A supplementary memoir on the theory of matrices. Phil. Trans. R. Soc. London, 156:438–48, 1866. Reprinted in Papers 5.
87.
Zurück zum Zitat A. Cayley. Collected Mathematical Papers, volumes 1–14. Cambridge University Press, Cambridge, 1889–1898. A. Cayley. Collected Mathematical Papers, volumes 1–14. Cambridge University Press, Cambridge, 1889–1898.
151.
Zurück zum Zitat G. Eisenstein. Allgemeine Untersuchungen über die Formen dritten Grades mit drei Variabeln, welche der Kreistheilung ihre Enstehung verdanken. Jl. für die reine u. angew. Math., 28:289–374, 1844.MATH G. Eisenstein. Allgemeine Untersuchungen über die Formen dritten Grades mit drei Variabeln, welche der Kreistheilung ihre Enstehung verdanken. Jl. für die reine u. angew. Math., 28:289–374, 1844.MATH
152.
Zurück zum Zitat G. Eisenstein. Beiträge zur Theorie der elliptischen Functionen. Jl. für die reine u. angew. Math., 35:137–146, 1847.MATHCrossRef G. Eisenstein. Beiträge zur Theorie der elliptischen Functionen. Jl. für die reine u. angew. Math., 35:137–146, 1847.MATHCrossRef
153.
Zurück zum Zitat G. Eisenstein. Neue Theoreme der höheren Arithmetik. Jl. für die reine u. angew. Math., 35:117–136, 1847.MATHCrossRef G. Eisenstein. Neue Theoreme der höheren Arithmetik. Jl. für die reine u. angew. Math., 35:117–136, 1847.MATHCrossRef
154.
Zurück zum Zitat G. Eisenstein. Über die Vergleichung von solchen ternären quadratischen Formen, welche verschiedene Determinante haben. Ber. u. die Verb. der Akad. der Wiss. Berlin 1852, pages 350–389, 1852. G. Eisenstein. Über die Vergleichung von solchen ternären quadratischen Formen, welche verschiedene Determinante haben. Ber. u. die Verb. der Akad. der Wiss. Berlin 1852, pages 350–389, 1852.
180.
Zurück zum Zitat G. Frobenius. Note sur la théorie des formes quadratiques à un nombre quelconque de variables. Comptes Rendus, Acad. Sci. Paris, 85:131–133, 1877. Reprinted in Abhandlungen 1, 340–342. G. Frobenius. Note sur la théorie des formes quadratiques à un nombre quelconque de variables. Comptes Rendus, Acad. Sci. Paris, 85:131–133, 1877. Reprinted in Abhandlungen 1, 340–342.
181.
Zurück zum Zitat G. Frobenius. Über lineare Substitutionen und bilineare Formen. Jl. für die reine u. angew. Math., 84:1–63, 1878. Reprinted in Abhandlungen 1, 343–405. G. Frobenius. Über lineare Substitutionen und bilineare Formen. Jl. für die reine u. angew. Math., 84:1–63, 1878. Reprinted in Abhandlungen 1, 343–405.
244.
Zurück zum Zitat C. Gauss. Disquisitiones arithmeticae. G. Fleischer, Leipzig, 1801. English translation by A. Clark (Yale University Press, New Haven, 1966). In quotations I have followed Clark’s translation unless otherwise noted. C. Gauss. Disquisitiones arithmeticae. G. Fleischer, Leipzig, 1801. English translation by A. Clark (Yale University Press, New Haven, 1966). In quotations I have followed Clark’s translation unless otherwise noted.
262.
Zurück zum Zitat W. R. Hamilton. Lectures on Quaternions. Hodges and Smith, Dublin, 1853. W. R. Hamilton. Lectures on Quaternions. Hodges and Smith, Dublin, 1853.
267.
Zurück zum Zitat T. Hawkins. Hypercomplex numbers, Lie groups and the creation of group representation theory. Arch. Hist. Exact Sci., 8:243–287, 1972.MathSciNetMATHCrossRef T. Hawkins. Hypercomplex numbers, Lie groups and the creation of group representation theory. Arch. Hist. Exact Sci., 8:243–287, 1972.MathSciNetMATHCrossRef
270.
Zurück zum Zitat T. Hawkins. Another look at Cayley and the theory of matrices. Archives internationales d’histoire des sciences, 26:82–112, 1977.MathSciNet T. Hawkins. Another look at Cayley and the theory of matrices. Archives internationales d’histoire des sciences, 26:82–112, 1977.MathSciNet
287.
Zurück zum Zitat C. Hermite. Remarques sur un mémoire de M. Cayley relatif aux déterminants gauches. Cambr. and Dublin Math. Journal, 9:63–67, 1854. Reprinted in Oeuvres 1, 290–295. C. Hermite. Remarques sur un mémoire de M. Cayley relatif aux déterminants gauches. Cambr. and Dublin Math. Journal, 9:63–67, 1854. Reprinted in Oeuvres 1, 290–295.
288.
Zurück zum Zitat C. Hermite. Sur la théorie des formes quadratiques. Premier mémoire. Jl. für die reine u. angew. Math., 47:313–342, 1854. Reprinted in Oeuvres 1, 200–233. C. Hermite. Sur la théorie des formes quadratiques. Premier mémoire. Jl. für die reine u. angew. Math., 47:313–342, 1854. Reprinted in Oeuvres 1, 200–233.
289.
Zurück zum Zitat C. Hermite. Sur la théorie des formes quadratiques. Seconde mémoire. Jl. für die reine u. angew. Math., 47:343–368, 1854. Reprinted in Oeuvres 1, 234–263. C. Hermite. Sur la théorie des formes quadratiques. Seconde mémoire. Jl. für die reine u. angew. Math., 47:343–368, 1854. Reprinted in Oeuvres 1, 234–263.
290.
Zurück zum Zitat C. Hermite. Remarque sur un théorème de M. Cauchy. Comptes Rendus, Acad. Sci. Paris, 41:181–183, 1855. Reprinted in Oeuvres 1, 459–481. C. Hermite. Remarque sur un théorème de M. Cauchy. Comptes Rendus, Acad. Sci. Paris, 41:181–183, 1855. Reprinted in Oeuvres 1, 459–481.
291.
Zurück zum Zitat C. Hermite. Sur la théorie de la transformation des fonctions abéliennes. Comptes Rendus, Acad. Sci. Paris, 40, 1855. Reprinted in Oeuvres 1, 444–477. C. Hermite. Sur la théorie de la transformation des fonctions abéliennes. Comptes Rendus, Acad. Sci. Paris, 40, 1855. Reprinted in Oeuvres 1, 444–477.
293.
Zurück zum Zitat C. Hermite. Extrait d’une lettre de M. Ch. Hermite sur la transformation des formes quadratiques en elles-mêmes. Jl. für die reine u. angew. Math., 78:325–328, 1874. Reprinted in Oeuvres 3, 185–189. C. Hermite. Extrait d’une lettre de M. Ch. Hermite sur la transformation des formes quadratiques en elles-mêmes. Jl. für die reine u. angew. Math., 78:325–328, 1874. Reprinted in Oeuvres 3, 185–189.
294.
Zurück zum Zitat I. N. Herstein. Topics in Algebra. Wiley, New York, 2nd. edition, 1975.MATH I. N. Herstein. Topics in Algebra. Wiley, New York, 2nd. edition, 1975.MATH
311.
Zurück zum Zitat C. G. J. Jacobi. De formatione et proprietatibus determinantium. Jl. für die reine u. angew. Math., 22:285–318, 1841. Reprinted in Werke 3, 255–392. C. G. J. Jacobi. De formatione et proprietatibus determinantium. Jl. für die reine u. angew. Math., 22:285–318, 1841. Reprinted in Werke 3, 255–392.
318.
Zurück zum Zitat M. Jammer. The Conceptual Development of Quantum Mechanics. McGraw–Hill, New York, 1966. M. Jammer. The Conceptual Development of Quantum Mechanics. McGraw–Hill, New York, 1966.
322.
Zurück zum Zitat C. Jordan. Traité des substitutions et des équations algébriques. Gauthier–Villars, Paris, 1870. C. Jordan. Traité des substitutions et des équations algébriques. Gauthier–Villars, Paris, 1870.
349.
Zurück zum Zitat C. G. Knott. Life and Scientific Work of Peter Guthrie Tait. Cambridge University Press, Cambridge, 1911. C. G. Knott. Life and Scientific Work of Peter Guthrie Tait. Cambridge University Press, Cambridge, 1911.
353.
Zurück zum Zitat L. Kronecker. Über bilineare Formen. Monatsberichte der Akademie der Wiss. zu Berlin, 1:145–162, 1866. Reprinted in Jl. für die reine u. angew. Math., 68:273–285 and in Werke 1, 145–162. L. Kronecker. Über bilineare Formen. Monatsberichte der Akademie der Wiss. zu Berlin, 1:145–162, 1866. Reprinted in Jl. für die reine u. angew. Math., 68:273–285 and in Werke 1, 145–162.
359.
Zurück zum Zitat L. Kronecker. Über die congruenten Transformation der bilinearen Formen. Monatsberichte der Akademie der Wiss. zu Berlin, pages 397–447, 1874. Presented April 23, 1874. Reprinted in Werke 1, 423–483. L. Kronecker. Über die congruenten Transformation der bilinearen Formen. Monatsberichte der Akademie der Wiss. zu Berlin, pages 397–447, 1874. Presented April 23, 1874. Reprinted in Werke 1, 423–483.
393.
Zurück zum Zitat E. Laguerre. Sur le calcul des systèmes linéaires. Journal École Polytechnique, 62, 1867. Reprinted in Oeuvres 1, 221–267. E. Laguerre. Sur le calcul des systèmes linéaires. Journal École Polytechnique, 62, 1867. Reprinted in Oeuvres 1, 221–267.
404.
Zurück zum Zitat V. A. Lebesgue. Thèses de mécanique et d’astronomie. Jl. de math. pures et appl., 2:337–355, 1837. V. A. Lebesgue. Thèses de mécanique et d’astronomie. Jl. de math. pures et appl., 2:337–355, 1837.
437.
Zurück zum Zitat L. Maurer. Zur Theorie der linearen Substitutionen. Inauguraldissertation Strassburg. R. Schultz, Strassburg, 1887. L. Maurer. Zur Theorie der linearen Substitutionen. Inauguraldissertation Strassburg. R. Schultz, Strassburg, 1887.
464.
Zurück zum Zitat C. S. Peirce. On the algebras in which division is unambiguous. Am. Jl. of Math., 4:225–229, 1881. C. S. Peirce. On the algebras in which division is unambiguous. Am. Jl. of Math., 4:225–229, 1881.
482.
Zurück zum Zitat H. Poincaré. Préface. In Oeuvres de Laguerre, volume 1, pages v–xv. Gauthier–Villars, Paris, 1898. H. Poincaré. Préface. In Oeuvres de Laguerre, volume 1, pages v–xv. Gauthier–Villars, Paris, 1898.
498.
Zurück zum Zitat O. Rodrigues. Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendent des causes qui peuvent les produire. Jl. de math. pures et appl., 5:380–440, 1840. O. Rodrigues. Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendent des causes qui peuvent les produire. Jl. de math. pures et appl., 5:380–440, 1840.
506.
Zurück zum Zitat J. Rosanes. Über die Transformation einer quadratischen Form in sich selbst. Jl. für die reine u. angew. Math., 80:52–72, 1875.MATH J. Rosanes. Über die Transformation einer quadratischen Form in sich selbst. Jl. für die reine u. angew. Math., 80:52–72, 1875.MATH
576.
Zurück zum Zitat A. Voss. Ueber die mit einer bilinearen Form vertauschbaren bilinearen Formen. Sitzungsberichte der mathematisch–physikalischen Classe der k. b. Akademie der Wissenschaften zu München 1889, 1890. A. Voss. Ueber die mit einer bilinearen Form vertauschbaren bilinearen Formen. Sitzungsberichte der mathematisch–physikalischen Classe der k. b. Akademie der Wissenschaften zu München 1889, 1890.
588.
Zurück zum Zitat K. Weierstrass. Zur Theorie des quadratischen und bilinearen Formen. Monatsberichte der Akademie der Wiss. zu Berlin, pages 311–338, 1868. Reprinted with modifications in Werke 2, 19–44. K. Weierstrass. Zur Theorie des quadratischen und bilinearen Formen. Monatsberichte der Akademie der Wiss. zu Berlin, pages 311–338, 1868. Reprinted with modifications in Werke 2, 19–44.
Metadaten
Titel
The Cayley–Hermite Problem and Matrix Algebra
verfasst von
Thomas Hawkins
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6333-7_7