Skip to main content

Hierarchical Models of the Visual System

Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amit Y, Mascaro M (2003) An integrated network for invariant visual detection and recognition. Vision Res 43(19):2073–2088

    Article  PubMed  Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ (2011) Normalization as a canonical neural computation. Nature Rev Neurosci 13:51–62

    Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (2000) A recurrent network model for the phase invariance of complex cell responses. Neurocomputing 32:339–344

    Article  Google Scholar 

  • Chen X, Han F, Poo M-m, Dan Y (2007) Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1). Proc Natl Acad Sci U S A 104(48):19120–19125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062

    CAS  PubMed  Google Scholar 

  • Dicarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex (New York, NY: 1991) 1(1):1–47

    CAS  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  CAS  PubMed  Google Scholar 

  • Geman S (1999) Hierarchy in machine and natural vision. In: Proceedings of the 11th Scandinavian Conference on Image Analysis, Kangerlusssuaq, Greenland, pp 7–11

    Google Scholar 

  • Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Neuroscience 4:179–192

    CAS  PubMed  Google Scholar 

  • Grossberg S, Mingolla E, Pack C (1999) A neural model of motion processing and visual navigation by cortical area MST. Cereb Cortex 9(8):878–895

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Markowitz J, Cao Y (2011a) On the road to invariant recognition: explaining tradeoff and morph properties of cells in inferotemporal cortex using multiple-scale task-sensitive attentive learning. Neural Netw 24(10):1036–1049

    Article  PubMed  Google Scholar 

  • Grossberg S, Srinivasan K, Yazdanbakhsh A (2011b) On the road to invariant object recognition: how cortical area V2 transforms absolute to relative disparity during 3D vision. Neural Netw 24(7):686–692

    Article  PubMed  Google Scholar 

  • Hegdé J, Essen DV (2007) A comparative study of shape representation in macaque visual areas V2 and V4. Cereb Cortex 17:1100–1116

    Article  PubMed  Google Scholar 

  • Hegdé J, Felleman DJ (2007) Reappraising the functional implications of the primate visual anatomical hierarchy. Neuroscientist 13(5):416–421

    Article  PubMed  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36(5):791–804

    Article  CAS  PubMed  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jhuang H, Serre T, Wolf L, Poggio T (2007) A biologically inspired system for action recognition. In: 2007 I.E. 11th international conference on computer vision, Rio de Janeiro, Brazil pp 14–20

    Google Scholar 

  • Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    CAS  PubMed  Google Scholar 

  • Kouh M, Poggio T (2008) A general mechanism for cortical tuning: normalization and synapses can create Gaussian-like tuning. 20(6):1427–1451

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Infr Proc Syst 2:1097–1105

    Google Scholar 

  • Landy M, Movshon J (1991) Computational models of visual processing. Bradford Books Cambridge, MA

    Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Marko H, Giebel H (1970) Recognition of handwritten characters with a system of homogeneous layers. Nachrichtentechnische Zeitschrift 23:455–459

    Google Scholar 

  • Maruyama M, Girosi F, Poggio T (1992) A connection between GRBF and MLP. MIT, Cambridge, MA

    Google Scholar 

  • Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2):e31

    Article  PubMed Central  PubMed  Google Scholar 

  • Mel BW (1997) SEEMORE: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput 9:777–804

    Article  CAS  PubMed  Google Scholar 

  • Mineault P, Khawaja F, Butts D, Pack C (2012) Hierarchical processing of complex motion along the primate dorsal visual pathway. Proc Natl Acad Sci U S A 109(16):E972–E980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Reilly RC, Wyatte D, Herd S, Mingus B, Jilk DJ (2013) Recurrent processing during object recognition. Front Psychol 4:1–14

    Google Scholar 

  • Ostojic S, Brunel N (2011) From spiking neuron models to linear-nonlinear models. PLoS Comput Biol 7(1):e1001056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pack CC, Born RT (2008) Cortical mechanisms for the integration of visual motion. Elsevier, Oxford

    Google Scholar 

  • Perrett D, Oram M (1993) Neurophysiology of shape processing. Image Vis Comput 11(6):317–333

    Article  Google Scholar 

  • Perrone J, Thiele A (2002) A model of speed tuning in MT neurons. Vis Res 42(8):1035–1051

    Article  PubMed  Google Scholar 

  • Poggio T, Smale S (2003) The Mathematics of Learning: Dealing with Data. Notices Amer. Math. Soc 50(5):537–544

    Google Scholar 

  • Rieke F, Warland D, van Steveninck R, Bialek W, van Steveninck R (1997) Spikes. MIT Press, Cambridge, MA

    Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(Pt 3):717–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque v1 receptive fields. Neuron 46(6):945–956

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9(11):1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Series P, Lorenceau J, Fregnac Y (2003) The silent surround of V1 receptive fields: theory and experiments. J Physiol 97:453–474

    Google Scholar 

  • Serre T, Poggio T (2010) A neuromorphic approach to computer vision. Commun ACM 53(10):54

    Article  Google Scholar 

  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007a) A quantitative theory of immediate visual recognition. Prog Brain Res 165:33

    Article  PubMed  Google Scholar 

  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007b) A quantitative theory of immediate visual recognition. Prog Brain Res 165(06):33–56

    Article  PubMed  Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38(5):743–761

    Article  CAS  PubMed  Google Scholar 

  • Thorpe SJ (2002) Ultra-rapid scene categorisation with a wave of spikes. Proc Biol Mot Comput Vis, 25(25):1–15

    Google Scholar 

  • Tsao DY, Moeller S, Freiwald WA (2008) Comparing face patch systems in macaques and humans. Proc Natl Acad Sci U S A 105(49):19514–19519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ullman S, Vidal-Naquet M, Sali E (2002) Visual features of intermediate complexity and their use in classification. Nat Neurosci 5(7):682–687

    CAS  PubMed  Google Scholar 

  • Wallis G, Rolls ET (1997) A model of invariant object recognition in the visual system. Prog Neurobiol 51:167–194

    Article  CAS  PubMed  Google Scholar 

  • Wersing H, Koerner E (2003) Learning optimized features for hierarchical models of invariant recognition. Neural Comput 15(7):1559–1588

    Article  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Serre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Serre, T. (2014). Hierarchical Models of the Visual System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_345-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hierarchical Models of the Visual System
    Published:
    12 March 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-2

  2. Original

    Hierarchical Models of the Visual System
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-1