Skip to main content

Auditory Prosthesis

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Bionic ear; Cochlear implant; Inner ear prosthesis

Definition

An auditory prosthesis is an implantable device used to (partially) restore the auditory function in people with a severe to profound hearing loss by electrically stimulating the auditory neural pathway. The cochlear implant, stimulating the auditory nerve from within the cochlea, is widely accepted as the standard rehabilitation device for this population. An auditory brain stem implant uses the same technology to stimulate the neurons of the cochlear nucleus in the brain stem and is used when the cochlea is not accessible (e.g., due to ossification after meningitis or severe hypoplasia) or the cause of deafness is found in the internal auditory canal (bilateral acoustic neuroma, aplasia of the auditory nerve).

Detailed Description

Background

Due to their reduced oral communication skills, severe to profoundly deaf people are restricted in their social functioning. Since the pioneering work of Djourno and Eyries (1957...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Biomedical and Life Sciences > Encyclopedia of Computational Neuroscience > Hodgkin and Huxley (http://www.springerreference.com/docs/html/chapterdbid/348192.html)

  • Briaire JJ, Frijns JHM (2005) Unravelling the electrically evoked compound action potential. Hear Res 205(1–2):143–156

    Article  PubMed  Google Scholar 

  • Briaire JJ, Frijns JHM (2006) The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res 214(1–2):17–27

    Article  PubMed  Google Scholar 

  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Dynes S, Javel E, Clark GM (1999) A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Biomed Eng 46(6):630–637

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, Macherey O, Frijns JHM, Axon PR, Kalkman RK, Boyle P, Baguley DM, Briggs J, Deeks JM, Briaire JJ, Barreau X, Dauman R (2010) Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear. J Assoc Res Otolaryngol 11(4):625–640

    Article  PubMed Central  PubMed  Google Scholar 

  • Colombo J, Parkins JW (1987) A model of electrical excitation of the mammalian auditory-nerve neuron. Hear Res 31:287–312

    Article  PubMed  CAS  Google Scholar 

  • Djourno A, Eyries C (1957) Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. Presse Med 65:1417

    PubMed  CAS  Google Scholar 

  • Frankenhæuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol (Lond) 171:302–315

    Google Scholar 

  • Frijns JHM, de Snoo SL, Schoonhoven R (1995) Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 87:170–186

    Article  PubMed  CAS  Google Scholar 

  • Frijns JHM, Briaire JJ, Grote JJ (2001) The importance of human cochlear anatomy for the results with modiolus hugging multi-channel cochlear implants. Otol Neurotol 22(3):340–349

    Article  PubMed  CAS  Google Scholar 

  • Frijns JHM, Kalkman RK, Vanpoucke FJ, Bongers JS, Briaire JJ (2009a) Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Otolaryngol 129(4):433–439

    Article  PubMed  Google Scholar 

  • Frijns JH, Kalkman RK, Briaire JJ (2009b) Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modeling study. Otol Neurotol 30(8):1168–1174

    Article  PubMed  Google Scholar 

  • Frijns JHM, Dekker DMT, Briaire JJ (2011) Neural excitation patterns induced by phased-array stimulation in the implanted human cochlea. Acta Otolaryngol 131(4):362–370

    Article  PubMed  Google Scholar 

  • Goldwyn JH, Bierer SM, Bierer JA (2010) Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear Res 268(1–2):93–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanekom T (2001) Three-dimensional spiraling finite element model of the electrically stimulated cochlea. Ear Hear 22(4):300–315

    Article  PubMed  CAS  Google Scholar 

  • House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82(4):504–517

    PubMed  CAS  Google Scholar 

  • Imennov NS, Rubinstein JT (2009) Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng 56(10):2493–2501

    Article  PubMed  Google Scholar 

  • Motz H, Rattay F (1986) A study of the application of the Hodgkin-Huxley and the Frankenhaeuser-Huxley model for electrostimulation of the acoustic nerve. Neuroscience 18:699–712

    Article  PubMed  CAS  Google Scholar 

  • O’Leary SJ, Black RC, Clark GM (1985) Current distributions in the cat cochlea: a modelling and electrophysiological study. Hear Res 18:273–281

    Article  PubMed  Google Scholar 

  • Rattay F, Leao RN, Felix H (2001) A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res 153(1–2):64–79

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127(1–2):108–118

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JR, Eikhof G (1987) Na currents and action potentials in rat myelinated nerve fibres at 20 °C and 37 °C. Pflugers Arch 409:569–577

    Article  PubMed  CAS  Google Scholar 

  • Smit JE, Hanekom T, van Wieringen A, Wouters J, Hanekom JJ (2010) Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear Res 269(1–2):12–22

    Article  PubMed  Google Scholar 

  • Snel-Bongers J, Briaire JJ, Van Veen EH, Kalkman RK, Frijns JHM (2013) Threshold levels of dual electrode stimulation in cochlear implants. J Assoc Res Otolaryngol 14:781–790

    Article  PubMed  Google Scholar 

  • Suesserman MF, Spelman FA (1993) Lumped-parameter model for in vivo cochlear stimulation. IEEE Trans Biomed Eng 40:237–245

    Article  PubMed  CAS  Google Scholar 

  • Westen AA, Dekker DMT, Briaire JJ, Frijns JHM (2011) Stimulus level effects on neural excitation and eCAP amplitude. Hear Res 280:166–176

    Article  PubMed  CAS  Google Scholar 

  • Whiten D (2007) Electro-anatomical models of the cochlear implant. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352(6332):236–238

    Article  PubMed  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan H. M. Frijns M.D. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Frijns, J.H.M., Briaire, J.J. (2014). Auditory Prosthesis. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_554-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_554-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics