Skip to main content

Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images

  • Chapter
  • First Online:
Abdomen and Thoracic Imaging

Abstract

Contrast-enhanced ultrasound (CEUS) imaging has lately benefited of an increasing interest for diagnosis and intervention planning, as it allows to visualize blood flow in real-time harmlessly for the patient. It complements thus the anatomical information provided by conventional ultrasound (US). This chapter is dedicated to kidney segmentation methods in 3D CEUS images. First we present a generic and fast two-step approach to locate (via a robust ellipsoid estimation algorithm) and segment (using a template deformation framework) the kidney automatically. Then we show how user interactions can be integrated within the algorithm to guide or correct the segmentation in real-time. Finally, we develop a co-segmentation framework that generalizes the aforementioned method and allows the simultaneous use of multiple images (here the CEUS and the US images) to improve the segmentation result. The different approaches are evaluated on a clinical database of 64 volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Up to a constant multiplier.

  2. 2.

    The ground truth may not exactly be reached because of the high intra-operator variability.

  3. 3.

    For example, the seminal method of Chan and Vese [33] falls in this framework with f = H the Heaviside function and \(r_{I}({\bf x}) = {(I({\bf x}) - c_{\mathrm{ int}})}^{2} - {(I({\bf x}) - c_{\mathrm{ ext}})}^{2}\) with c int and c ext denoting mean intensities inside and outside the target object.

References

  1. Albrecht T et al (2004) Guidelines for the use of contrast agents in ultrasound. Ultraschall Med 25(4):249–256

    Article  PubMed  CAS  Google Scholar 

  2. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imag 25(8):987–1010

    Article  Google Scholar 

  3. Gasnier A, Ardon R, Ciofolo-Veit C, Leen E, Correas J (2010) Assessing tumour vascularity with 3D contrast-enhanced ultrasound: a new semi-automated segmentation framework. In: Proceedings of IEEE ISBI 2010, pp 300–303. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5490351

  4. Kissi A, Cormier S, Pourcelot L, Bleuzen A, Tranquart E (2004) Contrast enhanced ultrasound image segmentation based on fuzzy competitive clustering and anisotropic diffusion. In: IEEE IEMBS 2004, vol 1, pp 1613–1615. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1403489

  5. Prevost R, Cohen L, Correas J, Ardon R (2012) Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images. Proc. SPIE 8314:83141D–83141D1

    Google Scholar 

  6. Ma M, Stralen M, Reiber J, Bosch J, Lelieveldt B (2009) Left ventricle segmentation from contrast enhanced fast rotating ultrasound images using three dimensional active shape models. In: Proceedings of FIMH 2009, pp 295–302. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6235871

    Google Scholar 

  7. Prevost R, Mory B, Correas JM, Cohen LD, Ardon R (2012) Kidney detection and real-time segmentation in 3D contrast-enhanced ultrasound images. In: Proceedings of IEEE ISBI, pp 1559–62

    Google Scholar 

  8. Prevost R, Cuingnet R, Mory B, Correas JM, Cohen LD, Ardon R (2013) Joint co-segmentation and registration of 3D ultrasound images. In: To appear in Proceedings of IPMI, pp 268–279. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Guil N, Zapata E (1997) Lower order circle and ellipse Hough transform. Pattern Recogn 30(10):1729–1744

    Article  Google Scholar 

  10. McLaughlin RA (1998) Randomized Hough transform: improved ellipse detection with comparison. Pattern Recogn Lett 19(3):299–305

    Article  Google Scholar 

  11. Wong C, Lin S, Ren T, Kwok N (2012) A survey on ellipse detection methods. In: 2012 I.E. international symposium on industrial electronics (ISIE), pp 1105–1110. IEEE, New York

    Chapter  Google Scholar 

  12. Van Aelst S, Rousseeuw P (2009) Minimum volume ellipsoid. Wiley Interdisciplin Rev: Comput Statist 1(1):71–82

    Article  Google Scholar 

  13. Saddi K, Chefd’Hotel C, Rousson M, Cheriet F (2007) Region-based segmentation via non-rigid template matching. In: Proceedings of ICCV, pp 1–7. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4409152

  14. Somphone O, Mory B, Makram-Ebeid S, Cohen LD (2008) Prior-based piecewise-smooth segmentation by template competitive deformation using partitions of unity. In: Proceedings of ECCV, pp 628–641. http://link.springer.com/chapter/10.1007/978-3-540-88690-7_47

    Google Scholar 

  15. Mory B, Somphone O, Prevost R, Ardon R (2012) Real-time 3D image segmentation by user-constrained template deformation. In: Proceedings of MICCAI. LNCS, vol 7510, pp 561–568. Springer, Berlin

    Google Scholar 

  16. Cuingnet R, Prevost R, Lesage D, Cohen LD, Mory B, Ardon R (2012) Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Proceedings of MICCAI. LNCS, vol 7512, pp 66–74. Springer, Berlin

    Google Scholar 

  17. Yezzi A, Soatto S (2003) Deformotion: deforming motion, shape average and the joint registration and approximation of structures in images. IJCV 53(2):153–167

    Article  Google Scholar 

  18. Schunck B, Horn B (1981) Determining optical flow. In: Image understanding workshop, pp 144–156. http://www.sciencedirect.com/science/article/pii/0004370281900242

  19. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin

    Book  Google Scholar 

  20. Vicente S, Kolmogorov V, Rother C (2010) Cosegmentation revisited: models and optimization. In: Proceedings of ECCV, vol 6312, pp 465–479

    Google Scholar 

  21. Wang F, Vemuri B (2005) Simultaneous registration and segmentation of anatomical structures from brain MRI. In: Proceedings of MICCAI. LNCS, vol 3749, pp 17–25. Springer, Berlin

    Google Scholar 

  22. Pohl K, Fisher J, Grimson W, Kikinis R, Wells W (2006) A Bayesian model for joint segmentation and registration. NeuroImage 31(1):228–239

    Article  PubMed  Google Scholar 

  23. Lu C, Duncan J (2012) A coupled segmentation and registration framework for medical image analysis using robust point matching and active shape model. In: IEEE Workshop on MMBIA, pp 129–136

    Google Scholar 

  24. Wyatt P, Noble JA (2002) MAP MRF joint segmentation and registration. In: Proceedings of MICCAI. LNCS, vol 2488, pp 580–587. Springer, Berlin

    Google Scholar 

  25. Yezzi A, Zöllei L, Kapur T (2003) A variational framework for integrating segmentation and registration through active contours. MedIA 7(2):171–185

    CAS  Google Scholar 

  26. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  27. Payet N, Todorovic S (2010) 2-Random forest random field. In: Proceedings of NIPS 2010

    Google Scholar 

  28. Montillo A, Shotton J, Winn J, Iglesias J, Metaxas D, Criminisi A (2011) Entangled decision forests and their application for semantic segmentation of CT images. In: Proceedings of IPMI. LNCS, vol 6801, pp 184–196. Springer, Berlin

    Google Scholar 

  29. Kontschieder P, Bulò S, Criminisi A, Kohli P, Pelillo M, Bischof H (2012) Context-sensitive decision forests for object detection. In: Proceedings of NIPS, pp 440–448

    Google Scholar 

  30. Glocker B, Pauly O, Konukoglu E, Criminisi A (2012) Joint classification-regression forests for spatially structured multi-object segmentation. In: Proceedings of ECCV. LNCS, vol 7575, pp 870–881. Springer, Berlin

    Google Scholar 

  31. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S (2012) Decision Forests for Tissue-specific Segmentation of High-grade Gliomas in Multi-channel MR. In: Proceedings of MICCAI. LNCS, vol 7512, pp 369–376. Springer, Berlin

    Google Scholar 

  32. Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE TPAMI 32(10):1744–1757

    Article  Google Scholar 

  33. Chan T, Vese L (2001) Active contours without edges. IEEE TIP 10(2):266–277

    CAS  Google Scholar 

  34. Han D, Bayouth J, Song Q, Taurani A, Sonka M, Buatti J, Wu X (2011) Globally optimal tumor segmentation in PET-CT images: A graph-based co-segmentation method. In: Proceedings of IPMI, pp 245–256. http://link.springer.com/chapter/10.1007/978-3-642-22092-0_21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Prevost .

Editor information

Editors and Affiliations

Appendix: Choice of the Parameter μ for Ellipsoid Detection

Appendix: Choice of the Parameter μ for Ellipsoid Detection

The choice of μ in Eq. (3) is paramount as it controls the number of points that are taken into account for the ellipsoid matrix estimation. To find a suitable value, let us consider an ideal case of an image I 0 in which there is one white ellipsoid (I 0 = 1) on a black background (I 0 = 0), whose implicit function is \(\phi _{ {\bf c}_{0},{\bf M}_{0}}\). We also assume that the confidence weight is w ≡ 1 everywhere. Then the matrix estimated by our approach would be

$$\begin{array}{rl} {{\bf M}}^{{\ast}}& = \mathrm{ argmin}_{{\bf M}}\ E_{\mathrm{ det}}({\bf c}_{0},{\bf M},{\bf 1})\\ {} & ={ \left [ \frac{2} {\mu } \frac{1} {\int _{\varOmega }I_{0}}\int _{\varOmega }I_{0}({\bf x})\ \left ({\bf x} -{\bf c}_{0}\right ){\left ({\bf x} -{\bf c}_{0}\right )}^{T}d{\bf x}\right ]}^{-1}\\ \end{array}$$
(26)

Using the fact that \(I_{0} = \boldsymbol{ 1}_{\{1-{({\bf x}-{\bf c}_{0})}^{T}{\bf M}_{0}({\bf x}-{\bf c}_{0})\geq 0\}}\) is the indicator of the ellipsoid yields

$$\displaystyle{{ {\bf M}}^{{\ast}} ={ \left [ \frac{2} {\mu } \frac{1} {\text{Vol}({\bf M}_{0})}\int _{\{1-{({\bf x}-{\bf c}_{0})}^{T}{\bf M}_{0}({\bf x}-{\bf c}_{0})\geq 0\}}\left ({\bf x} -{\bf c}_{0}\right ){\left ({\bf x} -{\bf c}_{0}\right )}^{T}d{\bf x}\right ]}^{-1} }$$
(27)

After a variable substitution \({\bf x} \leftarrow {\bf M}_{0}^{1/2}({\bf x} -{\bf c}_{0})\), this expression becomes

$$\displaystyle{{ {\bf M}}^{{\ast}} ={ \left [ \frac{2} {\mu } \frac{\det ({\bf M}_{0}^{-1/2})} {\text{Vol}({\bf M}_{0})} {\bf M}_{0}^{-1/2}\int _{ \{\|{\bf x}\|\leq 1\}}{\bf x}{{\bf x}}^{T}d{\bf x}\ \ {\bf M}_{ 0}^{-1/2}\right ]}^{-1} }$$
(28)

With \(\text{Vol}({\bf M}_{0}) = \displaystyle\frac{4\pi } {3} \sqrt{\det ({\bf M} _{0 }^{-1 })} = \frac{4\pi } {3} \det ({\bf M}_{0}^{-1/2})\), we then obtain

$$\displaystyle{{ {\bf M}}^{{\ast}} ={ \left [ \frac{2} {\mu }\ \frac{3} {4\pi }\ {\bf M}_{0}^{-1/2}\int _{ \{\|{\bf x}\|\leq 1\}}{\bf x}{{\bf x}}^{T}d{\bf x}\ \ {\bf M}_{ 0}^{-1/2}\right ]}^{-1} }$$
(29)

Note that the integral \(\int _{\{\|{\bf x}\|\leq 1\}}{\bf x}{{\bf x}}^{T}d{\bf x}\) denotes the covariance matrix of a 3D unit ball, which is actually a scalar matrix that can be easily computed

$$\int _{\{\|{\bf x}\|\leq 1\}}{\bf x}{{\bf x}}^{T}d{\bf x} = \left(\begin{array}{ccc} 2\pi\frac{2} {3}\frac{1} {5} & 0 & 0 \\ 0 & 2\pi \frac{2} {3}\frac{1} {5} & 0 \\ 0 & 0 & 2\pi \frac{2} {3}\ \frac{1} {5} \end{array} \right) = \frac{4\pi } {15} \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)$$
(30)

Combining Eqs. (29) and (30) leads to

$$\displaystyle{{ {\bf M}}^{{\ast}} ={ \left [ \frac{2} {\mu }\left (\frac{1} {5}\ {\bf M}_{0}^{-1}\right )\right ]}^{-1} }$$
(31)

which yields the following relationship between M ∗ and M 0 :

$$\displaystyle{{ {\bf M}}^{{\ast}} = \frac{5} {2}\mu {\bf M}_{0} }$$
(32)

This shows that the exact solution M 0 is retrieved for \(\mu = \frac{2} {5}\). This value actually depends on the dimension of Ω. Here we assumed \(\varOmega \subset \mathbb{R}^{3}\) but for 2D images, the optimal value would rather be \(\mu = \frac{1} {2}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prevost, R., Mory, B., Cuingnet, R., Correas, JM., Cohen, L.D., Ardon, R. (2014). Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics