Skip to main content

Drought Stress and Mycorrhizal Plant

  • Chapter
  • First Online:

Abstract

It is recognized that mycorrhizas permit the plant to perform more efficiently under stressful and unfavorable conditions. Recent reports on plant growth under drought stress and mycorrhizas account for 3.7 % of the published papers on mycorrhizas. Stress affects soil physical and chemical properties, as well as plant performance, which affect soil microbes, including symbiotic populations. This chapter was done to explore the current information on the mycorrhizas symbioses with respect to the research results on plant growth as affected by drought. The increasing appreciation that in arid and semiarid regions, most plants are mycorrhizal showed that underground processes are essential for understanding of ecosystem function. Accordingly, important findings related to the benefits of mycorrhizal management by increasing drought tolerance are highlighted. Therefore, research paths that are necessary for the increased understating of mycorrhizal benefits and soil amendments under drought stress are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF (2009) Bidirectional water flows through the soil–fungal–plant mycorrhizal continuum. New Phytol 182:292–293

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-Arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    Article  PubMed  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1987) Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation. Physiol Plant 70:175–182

    Article  Google Scholar 

  • Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Augé RM, Moore JL, Cho K, Stutz JC, Sylvia DM, Al-Agely AK, Saxton AM (2003) Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156

    Article  PubMed  Google Scholar 

  • Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271

    Chapter  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2005a) Interactions between Mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 195–212

    Chapter  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005b) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Fernández C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301

    Article  Google Scholar 

  • Bearden BN (2001) Influence of Arbuscular mycorrhizal fungi on soil structure and soil water characteristics of vertisols. Plant Soil 229:245–258

    Article  CAS  Google Scholar 

  • Birhane E, Kuyper TW, Sterck FJ, Bongers F (2010) Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For Ecol Manage 260:2160–2169

    Article  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  Google Scholar 

  • Busso CA, Bolletta A (2010) Biomass production, Arbuscular mycorrhizae and soil plant-available P under water stress in native perennial grasses. In: Tangadurai D, Busso CA, Hijri M (eds) Mycorrhizal biotechnology. Capital Publishing Company, New Delhi, pp 56–76

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Covacevich F, Echeverría HE (2009) Mycorrhizal occurrence and responsiveness in tall fescue and wheatgrass are affected by the source of phosphorus fertilizer and fungal inoculation. J Plant Interact 4:101–112

    Article  CAS  Google Scholar 

  • Covacevich F, Marino MA, Echeverria HE (2006) The phosphorus source determines the Arbuscular mycorrhizal potential and the native mycorrhizal colonization of tall fescue and wheatgrass in a moderately acidic Argentinean soil. Eur J Soil Biol 42:127–138

    Article  CAS  Google Scholar 

  • Covacevich F, Echeverría HE, Aguirrezabal AN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9

    Article  Google Scholar 

  • de Carvalho F, de Souza FA, Carrenho R, de Moreira FMS, Jesus EC, Fernandes GW (2012) The mosaic of habitats in the high-altitude Brazilian rupestrian fields is a hotspot for Arbuscular mycorrhizal fungi. Appl Soil Ecol 52:9–19

    Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors involved in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    Article  CAS  Google Scholar 

  • Elad Y, Cytryn E, Meller Harel Y, Lew B, Graber ER (2011) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50:335–349

    Google Scholar 

  • Elmer WH (2012) Influence of biochar and earthworms on plant growth, fusarium crown and root rot, and mycorrhizal colonization of asparagus. Acta Horticulturae 950:263–270 (Conference Paper)

    Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95:960–966

    Article  Google Scholar 

  • Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Phil Trans R Soc B 363:777–787

    Article  PubMed  Google Scholar 

  • Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Botany 39:595–603

    Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of Arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Article  Google Scholar 

  • Gong M, Tang M, Chen H, Zhang Q, Feng X (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forest 44(3):399–408

    Article  Google Scholar 

  • Herzog C, Peter M, Pritsch K, Günthardt-Goerg MS, Egli S (2013) Drought and air warming affects abundance and exoenzyme profiles of Cenococcum geophilum associated with Quercus robur, Q. petraea and Q. pubescens. Plant Biol 15(Suppl. 1):230–237

    Article  PubMed  CAS  Google Scholar 

  • Jaison S, Uma E, Muthukumar T (2011) Role of organic amendments on Arbuscular mycorrhizal formation and function. In: Miransari M (ed) Soil microbes and environmental health. Nova Science Publishers, Hauppauge, pp 217–237

    Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on Arbuscular mycorrhizal fungi, vol 266. Geological Society, London, pp 89–115 (Special Publications)

    Google Scholar 

  • Krull E, Baldock JA, Skjemstad J, Smernik R (2009) Characteristics of biochar: organo-chemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 53–66

    Google Scholar 

  • LeCroy C, Masiello CA, Rudgers JA, Hockaday WC, Silberg JJ (2013) Nitrogen, biochar, and mycorrhizae: alteration of the symbiosis and oxidation of the char surface. Soil Biol Biochem 58:248–254

    Article  CAS  Google Scholar 

  • Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B (2013) First cloning and characterization of two functional aquaporin genes from an Arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175:698–707

    Article  CAS  Google Scholar 

  • Lugo MA, Cabello MN (2002) Native Arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94:579–586

    Article  PubMed  Google Scholar 

  • Lugo MA, Ferrero MA, Menoyo E, Estévez MC, Siñeriz F, Anton AM (2008) Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microbial Ecol 55:705–713

    Article  CAS  Google Scholar 

  • Mathur N, Vyas A (2000) Influence of Arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam. under water stress. J Arid Environ 45:191–195

    Article  Google Scholar 

  • Miranda JCC (2008) Cerrado, micorriza arbuscular, ocorrência e manejo. Embrapa Cerrados, Planaltina, p 169

    Google Scholar 

  • Miransari M (2010) Contribution of Arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569

    PubMed  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using Arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Abbasipour H, Karimi J, Askarian Zadeh MR, Saeidi A (2011) Arbuscular mycorrhizal fungi and alleviation of soil stresses. In: Miransari M (ed) Soil microbes and environmental health. Nova Science Publishers, Hauppauge, pp 291–304

    Google Scholar 

  • Monroy-Ata A, García-Sánchez R (2009) Plantas y hongos. Micorrizas arbusculares: un mutualismo esencial en zonas semiáridas. Universidad Nacional Autónoma de México, México. (In Spanish)

    Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10:115–119

    Article  CAS  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of Arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42(5):724–738

    Article  CAS  Google Scholar 

  • Pagano MC (2011) Soil tillage in agroforestry and agroecosystems: mycorrhizal benefits. In: Miransari M (ed) Soil tillage and microbial activities. Research Signpost Publications, India, pp 65–84

    Google Scholar 

  • Pagano MC (ed) (2012) Mycorrhiza: occurrence and role in natural and restored environments. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Pagano MC, Araújo FS (2011) Semiarid vegetation in Brazil: biodiversity, impacts and management. In: Degenovine KM (ed) Semi-arid environments: agriculture, water supply and vegetation. Nova Science Publishers, Hauppauge, pp 99–114

    Google Scholar 

  • Pagano MC, Covacevich F (2011) Arbuscular mycorrhizas in agroecosystems. In: Fulton SM (ed) Mycorrhizal fungi: soil, agriculture and environmental implications. Nova Science Publishers, Hauppauge, pp 35–65

    Google Scholar 

  • Pagano MC, Cabello MN, Scotti MR (2010) Agroforestry in dry forest, Brazil: Mycorrhizal fungi potential. In: Kellymore LR (ed) Handbook on agroforestry: management practices and environmental impact. Nova Science Publishers, Hauppauge, pp 367–388

    Google Scholar 

  • Pagano MC, Schalamuk S, Cabello MN (2011) Arbuscular mycorrhizal parameters and indicators of soil health and functioning: applications for agricultural and agroforestal systems. In: Miransari M (ed) Soil microbes and environmental health. Nova Science Publishers, Hauppauge, pp 267–276

    Google Scholar 

  • Pagano MC, Lugo M, Araújo F, Ferrero M, Menoyo E, Steinaker D (2012) Native species for restoration and conservation of biodiversity in South America. In: Marín L, Kovač D (eds) Native species: identification, conservation and restoration. Nova Science Publishers, Hauppauge, pp 1–55

    Google Scholar 

  • Pagano MC, Zandavalli RB, Araújo FS (2013) Biodiversity of Arbuscular mycorrhizas in three vegetation types from the semiarid of Ceará State. Brazil Appl Soil Ecol 67:37–46

    Article  Google Scholar 

  • Parádi I, Baar J (2006) Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. Forest Ecol Manag 237:366–372

    Article  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Schalamuk S, Cabello MN (2010) Effect of tillage systems on the Arbuscular mycorrhizal fungi (AMF) propagule bank in soils. In: Arya A, Perelló AE (eds) Management of fungal plant pathogens. CAB International, Wallingford, pp 162–170

    Chapter  Google Scholar 

  • Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of Arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1):16–22

    Article  PubMed  CAS  Google Scholar 

  • Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Phil Trans R Soc B 363:477–494

    Article  PubMed  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schulze E, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin, p 702

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365 (Antioxidants and Reactive Oxygen Species in Plants Special Issue)

    Article  PubMed  Google Scholar 

  • Siddiqui Z, Pichtel J (2008) Mycorrhiza: sustainable agriculture and forestry. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: Sustainable agriculture and forestry, Springer, Berlin

    Google Scholar 

  • Sieverding E (1991) Vesicular-Arbuscular mycorrhiza management in tropical agrosystems. Deutche Gesellschaft für Technische Zusammenarbeit, GTZ No 224. Eschborn, p 371

    Google Scholar 

  • Simard SW, Austin ME (2010) The role of mycorrhizas in forest soil stability with climate change. In: Simard SW, Austin ME (eds) Climate change and variability. Sciyo, Rijeka, pp 275–302

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, New York

    Google Scholar 

  • Sofo A, Mnafreda S, Fiorentino M, Dichio B, Xiloyannis C (2008) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth Syst Sci 12:293–301

    Article  Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48(7):546–554

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Till Res 72:107–123

    Article  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasseling. New Phytol 129:643–650

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Sanders IR (eds) (2003) Mycorrhizal ecology. Springer, Berlin

    Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in Boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil: concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. Pagano is grateful to the Council for the Development of Higher Education at Graduate Level, Brazil (CAPES), for the postdoctoral scholarships granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Claudia Pagano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagano, M.C. (2014). Drought Stress and Mycorrhizal Plant. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9466-9_5

Download citation

Publish with us

Policies and ethics