Skip to main content

Biomonitoring and Bioindicators in Aquatic Ecosystems

  • Chapter
Book cover Modern Trends in Applied Aquatic Ecology

Abstract

In the past decades, an extremely large number of natural and synthetic chemical substances have been produced and used without knowledge of the possible environmental impact of the release of these chemicals, their impurities, and degradation products. Although most of these chemicals did not evoke an immediate effect in the aquatic environment, the total load of pollutants has certainly contributed to the observed changes in the structure and function of aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiard-Triquet, C., Jeantet, A. Y., & Berthet, B. (1993). Metal transfer accumulation in marine food chains: Bioaccumulation and toxicity. Acta Biol Hung, 44, 387–409.

    PubMed  CAS  Google Scholar 

  • Armitage, P. D., Moss, D., Wright, J. F., & Furse M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 77,333–347.

    Article  Google Scholar 

  • Barak, N. A. E., & Mason, C. F. (1990a). Mercury, cadmium and lead in eels and roach: The effects of size, season and locality on metal concentrations in flesh and liver. Science of the Total Environment, 92, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Barak, N. A. E., & Mason, C. F. (1990b). Mercury, cadmium and lead concentrations in five species of freshwater fish from eastern England. Science of the Total Environment, 92, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Batiuk, R. A., Orth, R. J., Moore, K. A., Dennison, W. C., Stevenson, J. C., Staver, L. W., Carter, V, Rybicki, N. B., Hickman, R. E., Kollar, S., Bieber, S., & Heasly, P. (1992). Chesapeake Bay submerged aquatic vegetation habitat requirements and restoration targets: A technical synthesis. Annapolis, MD: Environmental Protection Agency.

    Google Scholar 

  • Baudo, R., Rossi, D., & Quevauviller, P. (1995). Validation of the use of aquatic bioindicators by means of reference materials. In: M. Munawar, O. Hänninen, S. Roy, N. Munawar, L. Kärenlampi, & D. Brown (Eds.), Bioindicators of environmental health (pp. 211–225). Amsterdam: SPB Academic Publishing.

    Google Scholar 

  • Blanchard, M., Teil, M. J., Carru, A. M., Chesterikoff, A., & Chevreuil, M. (1997). Organochlorine distribution and mono-orthosubstituted PCB pattern in the roach (Rutilus rutilus) from the River Seine. Water Research, 31, 1455–1461.

    Article  CAS  Google Scholar 

  • Borcherding, J. (1992). Another early warning system for the detection of toxic discharges in the aquatic environment based on valve movements of the freshwater mussel Dreissena polymorpha. In: D. Neumann, & H. A. Jenner (Eds.), Zebra mussel Dreissena polymorpha (pp. 127–146). Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Borcherding, J., & Volpers, M. (1994). The “Dreissena-Monitor.” First results on the application of the biological early warning system in the continuous monitoring of water quality. Water Science Technology, 29, 199–201.

    Google Scholar 

  • Botermans, Y. J. H., & Admiraal, W. (1989). Nitrification rates in the lower river Rhine as a monitor for ecological recovery. Hydrobiologia, 188/189, 649–658.

    Article  Google Scholar 

  • Botterweg, J., van de Guchte, C., & van Breemen, L. C. W. A. (1989). Bio-alarm systems: A supplement to traditional monitoring of water quality. H 2 0, 22, 778–794.

    Google Scholar 

  • Bulich, A. A. (1979). Use of luminescens bacteria for determining toxicity in aquatic environments. In: L. L. Marking, & R. A. Kimerle, (Eds.), Aquatic toxicology (pp. 98–106). ASTM STP 667.

    Google Scholar 

  • Cairns, J., Jr. (1982). Biological monitoring in water pollution. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Cairns, J., Jr. (1988). Validating biological monitoring. In: D. S. Gruber, & J. M. Diamond (Eds.), Automated biomonitoring: Living sensors as environmental monitors (pp. 40–48). Chichester, UK: Ellis Horwoód.

    Google Scholar 

  • Cairns, J., Jr., & Dickson, K. L. (1973). Biological methods for the assessment of water quality. Baltimore: American Society for Testing and Materials.

    Book  Google Scholar 

  • Cairns, J., Jr., & Gruber, D. (1979). Coupling mini- and microcomputers to biological early warning systems. BioScience, 29, 665–669.

    Article  Google Scholar 

  • Cairns, J., Jr., & Gruber, D. (1980). A comparison of methods and instrumentation of biological early warning systems. Water Resource Bulletin, 16, 261–266.

    Article  Google Scholar 

  • Cairns, J., Jr., & van der Schalie, W. H. (1980). Biological monitoring: Part I. Early warning systems. Water Research, 14, 1179–1196.

    Article  Google Scholar 

  • Carson, R. (1962). Silent spring. New York: Crest Book.

    Google Scholar 

  • Caspers, N. (1988). Kritische Betrachtung des “Dynamischen Daphniatest.” Zeitschrift für Wasser- undAbwasser-Forschung, 21, 152.

    CAS  Google Scholar 

  • Cossa, D. (1989). A review of the use of Mytilus spp. as quantitative indicators of cadmium and mercury contamination in coastal waters. Oceanologica Ada, 12, 417–432.

    CAS  Google Scholar 

  • Cossu, C., Doyotte, A., Babut, M., Exinger, A., & Vasseur, P. (2000). Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicology and Environment Safety, 45, 106–121.

    Article  CAS  Google Scholar 

  • Crompton, T. R. (1997). Toxicants in the aqueous ecosystem. Chichester, UK: Wiley.

    Google Scholar 

  • de Kock, W. C. (1986). Monitoring bio-available marine contaminants with mussel (Mytilus edulis L.) in the Netherlands. Environmental Monitoring and Assessment, 7, 209–220.

    Article  Google Scholar 

  • de Kruijf, H. A. M., de Zwart, D., Viswanathan, P. N., & Ray, P. K. (1988). Manual on aquatic ecotoxicology. In Proceedings of the Indo-Dutch Training Course on Aquatic Ecotoxicology. Kluwer Academic Publishers.

    Google Scholar 

  • de Zwart, D. (1995). Monitoring water quality in the future: Vol. 3. Biomonitoring. Bilthoven, The Netherlands: RIVM.

    Google Scholar 

  • Evans, G. P., & Walwork, J. F. (1988). The WRc fish monitor and other biomonitoring methods. In: D. S. Gruber, & J. M. Diamond (Eds.), Automated biomonitoring: Living sensors as environmental monitors (pp. 75–90). Chichester, UK: Ellis Horwood.

    Google Scholar 

  • Farkas, A., Salánki, J., & Varanka, I. (1998). Assessment of heavy metal concentrations in organs of two fish species of Lake Balaton. Proceedings of the Latvian Academy of Science, 52, 93–99.

    Google Scholar 

  • Farkas, A., Salánki, J., & Varanka, I. (2000). Heavy metal concentrations in fish of Lake Balaton. Lakes and Reservoirs: Research and Management, 5, 271–279.

    Article  Google Scholar 

  • Girling, A. E., Pascoe, D., Janssen, C. R., Peither, A., Wenzel, A., Schafer, H., Neumeier, B., Mitchell, G. C., Taylor, E. J., Maund, S. J., Lay, J. P., Jüttner, I., Crossland, N. O., Stephenson, R. R., & Persoone, G. (2000). Development of methods for evaluating toxicity to freshwater ecosystems. Ecotoxicology and Environmental Safety, 45, 148–176.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, E. D. (1986). The mussel watch concept. Environmental Monitoring and Assessment, 7, 91–103.

    Article  CAS  Google Scholar 

  • Goldberg, E. D., Bowen, V T., Farrington, J., Harvey, G., Martin, J. H., Parker, P. L., Risebruogh, R. W., Robertson, W., Schneider, E., & Gamble, E. (1978). The mussel watch. Environmental Conservation, 5, 101–125.

    Article  CAS  Google Scholar 

  • Gruber, D. (1989). Biological monitoring and our water resources. Endeavour (New Series 13), 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, D. S., & Diamond, J. M. (1988). Automated biomonitoring-living sensors as environmental monitors. Chichester, UK: Wiley.

    Google Scholar 

  • Hänninen, O., Lindström-Seppa, P., Personen, M., Huuskonen, S., & Muona, P. (1991). Use of biotransformation activity in fish and fish hepatocytes in the monitoring of aquatic pollution caused by pulp industry. In: D. W. Jeffrey, & B. Madden (Eds.), Bioindicators and environmental management (pp. 13–20). London: Academic Press.

    Google Scholar 

  • Hart, C. W., Jr., & Fuller, S. L. H. (1974). Pollution ecology of freshwater invertebrates. New York, London: Academic Press.

    Google Scholar 

  • Hayward, R. S., Reichenbach, N. G., Dickson, L. A., & Wildoner, T., Jr. (1988). Variability among bluegill ventüatory rates for effluent toxicity biomonitoring. Water Research, 22, 1311–1315.

    Article  CAS  Google Scholar 

  • Herricks, E. E., & Cairns, J., Jr. (1982). Biological monitoring: Part III. Receiving system methodology based on community structure. Water Research, 16, 141–153.

    Article  Google Scholar 

  • lilies, J., & Botosaneanu, L. (1963). Problemes et methodes de la classification et de la zonation ecologique des eaux courantes, consideres surtout du point de vue faunistique. Mitt. Int. Verein. Limnol, 12, 1–57.

    Google Scholar 

  • Janssen, C. R., Ferrando, M. D., & Persoone, G. (1994). Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus: IV Rotifer behavior as a sensitive and rapid sublethal test criterion. Ecotoxicology and Environment Safety, 28, 244–255.

    Article  CAS  Google Scholar 

  • Jenner, H. A., Noppert, F., & Sikking, T. (1989). A new system for the detection of valve-movement response of bivalves. Kema Scientific and Technical Reports, 7, 91–98.

    CAS  Google Scholar 

  • Knie, J. (1978). Der dynaamischeen Daphnientest-ein automatischer Biomonitorzur überwachung von Gewässer und Abwässer. Wasser und Boden, 12, 310–312.

    Google Scholar 

  • Koeman, J. H., Poels, C. L. M., & Slooff, W. (1989). Continuous biomonitoring system for detection of toxic levels of water pollutants. In: Outzinger, O. (Ed.), Aquatic pollutants, transformation and biological effects (pp. 339–347). Oxford, UK: Pergamon Press.

    Google Scholar 

  • Kontreczky, C., Farkas, A., Nemcsók, J., & Salánki, J. (1997). Short- and long-term effects of deltamethrin on filtering activity of freshwater mussel (Anodonta cyngea L.). Ecotoxicology and Environment Safety, 38, 195– 199.

    Article  CAS  Google Scholar 

  • Kovács, M., Nyári, I., & Tóth, L. (1984). The microelement content of some submerged and floating aquatic plants. Acta Biol. Hung, 30, 173–185.

    Google Scholar 

  • Kovács, M., Nyári, I., & Tóth, L. (1985). The concentration of microelements in the aquatic weeds of Lake Balaton. In: J. Salánki, (Ed.), Heavy metals in water organisms (pp. 67–81). 29th Symp. Biol. Hung, Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Kramer, K. J. M., & Botterweg, J. (1991). Aquatic biological early warning systems: An overview. Bioindicators and Environmental Management, 95–126.

    Google Scholar 

  • Kramer, K. J. M., & Foekema, E. M. (2000). The “Musselmonitor” as biological early warning system: The first decade. In: Butterworth, F. M., Gonsebatt-Bonaparte, M. E., and Gunatilaka, A. (eds.), Biomonitors and biomarkers as indicators of environmental change (Vol. II pp. 59–87). New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Kramer, K. J. M., Jenner, H. A., & de Zwart, D. (1989). The valve movement response of mussels: a tool in biological monitoring. Hydrobiologia, 188/189, 433–443.

    Article  Google Scholar 

  • Leeuwangh, P. (1991). Pollution and pollution indicators in the aquatic and terrestrial environment. Delft, The Netherlands: International Institute for Hydraulic and Environmental Engineering.

    Google Scholar 

  • Levin, S. A., Harwell, M. A., Kelly, J. R., & Kimball, K. D. (1989). Ecotoxicology: Problems and approaches. New York: Springer-Verlag.

    Book  Google Scholar 

  • Mersch, J., & Pihan, J.-C. (1993). Simultaneous assessment of environmental impact on condition and trace metal availability in zebra mussels Dreissena polymorpha transplanted into the Wiltz River, Luxemburg: Comparison with the aquatic moss Fontinalis aantipyretica. Arch. Environ. Contam. Toxicol, 25, 353–364.

    Article  CAS  Google Scholar 

  • Morgan, W. S. G., & Kuhn, P. C. (1974). A method to monitor the effects of toxicant upon breathing rate of largemouth bass (Micropterus salmoides Lacepede). Water Research, 8, 61–11.

    Article  Google Scholar 

  • Munawar, M., Wong, P. T. S., & Rhee, G.-Y. (1988). The effects of contaminants on algae: An overview. In: N. W. Schmidtke (Ed.), Toxic contamination in large lakes (pp. 113–160). Chelsa, MI: Lewis.

    Google Scholar 

  • Muntau, H. (1981). Heavy metal distribution in the aquatic ecosystem “Southern Lake Maggiore”: II. Evaluation and trend analysis. Mem. 1st. Ital. Idrobiol., 38, 505–503.

    CAS  Google Scholar 

  • Nemcsók, J., Albers, C., Benedeczky, I., Götz, K. H., Schricker, K., Kufcsák, O., & Juhász, M. (1991). Effect of ecological factors on the toxicity of CuS04 in fishes. In: D. W. Jeffrey, & B. Madden (Eds.), Bioindicators and environmental management (pp. 365–377). London: Academic.

    Google Scholar 

  • Oertel, N. (1991). Heavy-metal accumulation in Cladophora glomerata (L.) Kütz in the River Danbue. AMBIO, 20, 264–268.

    Google Scholar 

  • Oertel, N. (1993a). Application of biomonitoring techniques in pollution control. Final Report, Community’s Action for Cooperation in Sciences and Technology with Central and Eastern European Countries. Ref. No. ERB3511PL922924, Prop. No. 12924.

    Google Scholar 

  • Oertel, N. (1993b). The applicability of Cladophora glomerata (L.) Kütz in an active bio-monitoring techniques to monitor heavy metals in the river Danube. Science of the Total Environment, 2, 1293–1304.

    Article  Google Scholar 

  • Oertel, N. (1994). Bio-monitoring in water quality control, with particular reference to bio-monitoring techniques used in the river Danube for detection of heavy metals. Ada. Biol. Debr. Oceol. Hung, 5, 81–90.

    Google Scholar 

  • Oertel, N. (1995). Plants and animals as biomonitors of heavy metal level in the aquatic ecosystem of the River Danube. Supplement of Archives of Toxicology, 18, 404–416.

    Article  Google Scholar 

  • Oertel, N. (1996). Use of zebra mussel (Dreissena polymorpha) to assess heavy metal pollution in the River Danube (Hungary). 31st Konferenz der IAD, Baja-Ungarn, Wissenschaftliche Referate, pp. 405–410.

    Google Scholar 

  • Oertel, N. (1997). Active biomonitoring with zebra mussel (Dreissenea polymorpha): A tool for the control of heavy metals in the River Danube. 32nd Konference der IAD, Wien/Österreich, Wissenschaftliche Referate, pp. 19–24.

    Google Scholar 

  • Oertel, N. (2000). “Freissena-Basket”-a powerful technique to monitor and control heavy metals in the River Danube. International Association of Danube Research, 33, 383–390.

    Google Scholar 

  • Pagga, Ü., & Gunthner, W. (1981). The BASF toximeter-a helpful instrument to control and monitor biological waste water treatment plants. Wat. Sci. Techn., 13, 233–238.

    CAS  Google Scholar 

  • Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of trace aquatic contaminants. New York: Elsevier Applied Science.

    Book  Google Scholar 

  • Reddy, R. S., & Fingerman, M. (1995). Effect of cadmium chloride on physiological color changes of the fiddler crab, Uca pugilator. Ecotoxicology and Environmental Safety, 31, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.

    Google Scholar 

  • Salánki, J. (1979). Behavioural studies on mussels under changing environmental conditions. In: J. Salánki, & P. Bíró (Eds.), Human impacts on life in fresh waters (pp. 169–176). 19th Symp. Biol. Hung, Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Salánki, J. (1989). New avenues in the biological indication of environmental pollution. Acta Biol. Sci. Hung, 40, 295–328.

    Google Scholar 

  • Salánki, J. (2000). Invertebrates in neurotoxicology. Acta Biol. Hung, 51, 287–307.

    PubMed  Google Scholar 

  • Salánki, J., & V-Balogh, K. (1989). Physiological background for using freshwater mussel in monitoring copper and lead pollution. Hydrobiologia, 188/189, 445–454.

    Article  Google Scholar 

  • Salánki, J., V.-Balogh, K., & Berta, E. (1982). Heavy metals in animals of Lake Balaton. Water Research, 16, 1147–1152.

    Article  Google Scholar 

  • Salánki, J., Jeffrey, D., & Hughes, G. M. (1994). Biological monitoring of the environment. Manual of methods. Wallingford, UK: CAB International.

    Google Scholar 

  • Salánki, J., Turpajev, T. M., & Nechaeva, M. (1991). Mussel as a test animal for assessing environmental pollution and the sub-lethals effect of pollutants. In: D. W. Jeffrey, & B. Madden, (Eds.), Bioindicators and environmental management (pp. 235–244). London: Academic Press.

    Google Scholar 

  • Salánki, J., & Varanka, I. (1978). Effect of some insecticides on the periodic activity of the freshwater mussel (Anodonta cygnea L.). Acta Biol. Sci. Hung, 29, 173–180.

    Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (1996). Bioaccumulation of heavy metals by aquatic macrophytes around Wroclaw, Poland. Ecotoxicology and Environmental Safety, 35, 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Sawidis, T., Chettri, M. K., Zachariadis, G. A., & Stratis, J. A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, E., McNicol, R. E., & Evans, R. E. (1997). Impairment of lake trout foraging by chronic exposure to cadmium: A black-box experiment. Aquatic Toxicology, 37, 1–7.

    Article  CAS  Google Scholar 

  • Schönborn, W. (1992). Fließgewässerbiologie. Stuttgart: Fisher Verlag.

    Google Scholar 

  • Schwaiger, J., Wanke, R., Adam, S., Pawert, M., Honnen, W., & Triebskorn, R. (1997). The use of histopatho- logical indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6, 75–86.

    Article  CAS  Google Scholar 

  • Sibley, P. K., Chappel, M. J., George, T. K., Solomon, K. R., & Liber, K. (2000). Integrating effects of stressors across levels of biological organization: Examples using organophosphorus insecticide mixtures in field-level exposures. Journal of Aquatic Ecosystem Stress and Recovery, 7, 117–130.

    Article  CAS  Google Scholar 

  • Sloof, W. (1983). Biological effects of chemical pollutants in the aquatic environment and their indicative value, Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • Smock, L. A. (1983). Relationships between metal concentrations and organism size in aquatic insects. Freshwater Biology, 75,313–321.

    Article  Google Scholar 

  • Stenalt, E., Johansen, B., Lillienskjold, S. V, & Hansen, B. W. (1998). Mesocosm study of Mytilus edulis larvae and postlarvae, including the settlement phase, exposed to a gradient of tributyltin. Ecotoxicology and Environment Safety, 40,212–225.

    Article  CAS  Google Scholar 

  • Teh, S. J., Adams, S. M., & Hinton, D. E. (1997). Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquatic Toxicology, 37, 51–70.

    Article  CAS  Google Scholar 

  • Theodorakis, C. W., Swartz, C. D., Rogers, W. J., Bickham, J. W., Donnelly, K. C., & Adams, S. M. (2000). Relationship between genotoxicity, mutagenicity, and fish community structure in a contaminated stream. Journal of Aquatic Ecosystem Stress and Recovery, 7, 131–143.

    Article  CAS  Google Scholar 

  • Uma Devi, V. (1996). Changes in oxygen consumption and biochemical composition of the marine fouling dreissinid bivalve Mytilopsis sallei (Recluz) exposed to mercury. Ecotoxicology and Environment Safety, 33, 168–174.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The River continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137.

    Article  Google Scholar 

  • Walker, C. H., & Livingstone, D. R. (1992). Persistent pollutants in marine ecosystems. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Warren, C. E. (1971). Biology and water pollution control. Philadelphia/London/Toronto: Saunders.

    Google Scholar 

  • Wells, P. G., Lee, K., & Blaise, Ch. (1997). Microscale testing in aquatic toxicology: Advances, techniques, and practice. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Whaley, M., Garcia, R., & Sy, J. (1989). Acute bioassay with benthic macroinvertebrates conducted in situ. Bull. Environm. Contam. Toxicol, 43, 570–575.

    Article  CAS  Google Scholar 

  • Whitton, B. A., Burrows, I. G., & Kelly, M. G. (1989). Use of Cladophora glomerata to monitor heavy metals in the rivers. Journal of Applied Phycology, 1, 293–299.

    Article  Google Scholar 

  • Yasuno, M. (1995). Long-term biomonitoring of organochlorine and organotin comopounds along the coast of Japan by the Japan Environment Agency. In: M. Munawar, O. Hänninen, S. Roy, N., Munawar, L. Kärenlampi, & D. Brown (Eds.), Bioindicators of environmental health (pp. 179–193). Amsterdam: SPB Academic Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oertel, N., Salánki, J. (2003). Biomonitoring and Bioindicators in Aquatic Ecosystems. In: Ambasht, R.S., Ambasht, N.K. (eds) Modern Trends in Applied Aquatic Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0221-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0221-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4972-3

  • Online ISBN: 978-1-4615-0221-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics