Skip to main content

Chemistry and Nutritional Value of Soybean Components

  • Chapter
Soybeans

Abstract

The soybean is one of the most economical and valuable agricultural commodities because of its unique chemical composition. Among cereal and other legume species, it has the highest protein content (around 40%); other legumes have a protein content between 20% and 30%, whereas cereals have a protein content in the range of 8-15%. The soybean also contains about 20% oil, the second highest content among all food legumes. (The highest oil content is found in peanut, which is about 48% on dry matter basis. The third highest oil content is chickpea, which is about 5%. The remaining food legume species have oil contents in the range of 1-3.6%) (Salunkhe et al. 1983). Other valuable components found in soybeans include phospholipids, vitamins, and minerals. Furthermore, soybeans contain many minor substances, some of which, such as trypsin inhibitors, phytates, and oligosaccharides, are known to be biologically active. Others, such as isoflavones, are just being recognized for their powerful ability to prevent human cancers and other diseases (Messina et al. 1994, Chapter 10 of this book). In this chapter the chemical components of soybeans are discussed with respect to their occurrences, properties, nutritional value, physiological roles, and assay methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AACC, 1983. American Association of Cereal Chemists, Approved Methods. Method 7110, approved Nov. 1973, St. Paul, MN.

    Google Scholar 

  • Abbott, T.P., Nabetani, H., Sessa, D.J., and Wold, W.J. 1996. Effects of bound water on FTIR spectra of glycinin. J. Agric. Food Chem. 44:2220–2224.

    CAS  Google Scholar 

  • Abdullah, A., Baldwin, R.E., and Minor, H. 1984. Germination effects on flatus-causing factors and antinutrients of mung beans and two strains of small-seeded soybeans. J. Food Prot. 47:441.

    CAS  Google Scholar 

  • Adlercreutz, H., Mousave, Y., Clark, J., Höcherstedt, K., Hämäläinen, E., Wähälä, K., Mäkelä, T., and Hase, T. 1992. Dietary phytoestrogens and cancer: in vitro and in vivo studies. J. Steroid Biochem. Mol. Biol. 41:331–337.

    CAS  Google Scholar 

  • Ahrens, E.H., Hirsch, J., Insull, W., Tsaltas, T.T., Blomstrand, R., and Peterson, M.L. 1957. The influence of dietary fats on serum lipid levels in man. Lancet 1:943–953.

    Google Scholar 

  • Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoch, N., Shibuya, M., and Fukami, Y. 1987. Genistein, a specific inhibitor of tyrosine protein kinase. J. Biol. Chem. 262:5592–5595.

    CAS  Google Scholar 

  • Anderson, J.T., Grande, F., and Keys, A. 1961. Hydrogenated fats in the diet and lipids in the serum of man. J. Nutr. 75:388.

    CAS  Google Scholar 

  • Anderson, J.W., Johnstone, B.M., and Cook-Newell, M.L. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 333:276.

    CAS  Google Scholar 

  • Anderson, R.L. 1992. Effect of steaming on soybean proteins and trypsin inhibitors. J. Am. Oil Chem. Soc. 69:1170–1176.

    CAS  Google Scholar 

  • Anonymous 1991. The trouble with margarine. Consumer Report. March, p. 196–197.

    Google Scholar 

  • Anthony, M.S., Clarkson, T.B., Hughes, C.L., Jr., Morgan, T.M., and Burke, G.L. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of prepubertal Rhesus monkeys. J. Nutr. 126:43.

    CAS  Google Scholar 

  • Applewhite, T.H. (Ed.) 1989. Proceedings of the World Congress: Vegetable Protein Utilization in Human Foods and Animal Feedstuffs. American Oil Chemists’ Society, Champaign, IL.

    Google Scholar 

  • Arechavaleta-Medina, F. and Snyder, H.E. 1981. Water imbibition by normal and hard soybeans. J. Am. Oil Chem. Soc. 58:976.

    Google Scholar 

  • Argos, P., Narayana, S.V.L., and Nielsen, N.C. 1985. Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J. 4:1111–1117.

    CAS  Google Scholar 

  • ASCN/AIN. 1996. Position paper on trans fatty acids, American Society for Clinical Nutrition/American Institute of Nutrition Task Force on Trans Fatty Acids. Am. J. Clin. Nutr. 63:663–670.

    Google Scholar 

  • Aspinall, G.O. 1988. Chemistry of soybean carbohydrates. In Proceedings of Soybean Utilization Alternatives, L. McCann (Ed.), pp. 117–129. University of Minnesota, St. Paul, MN. Feb. 16–18.

    Google Scholar 

  • Astwood, J.D. and Fuchs, R.L. 1996. Preventing food allergy: emerging technologies. Trends Food Sci. Technol. 7:219–226.

    CAS  Google Scholar 

  • Axelrod, B., Cheesbrough, T.M., and Laakso, S. 1981. Lipoxygenase from soybeans. Ch. 53. In Methods in Enzymology, vol. 71, p.441. Academic Press, New York.

    Google Scholar 

  • Badley, R.A., Atkinson, D., Hauser, H., Oldani, D., Green, J.P., and Stubbs, J.M. 1975. The structural, physical and chemical properties of soybean protein glycinin. Biochim. Biophys. Acta 412:214–228.

    CAS  Google Scholar 

  • Baker, E.C. and Mustakas, G.C. 1973. Heat inactivation of trypsin inhibitor, lipoxygenase, and urase in soybeans: effect of acid and base additives. J. Am. Oil Chem. Soc. 50:137.

    CAS  Google Scholar 

  • Barnes, S., Kirk, M., and Coward, L. 1994. Isoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry. J. Agric. Food Chem. 42:2466–2474.

    CAS  Google Scholar 

  • Bartholomew, R.M. and Ryan, D.S. 1980. Lack of mutagenicity of some phytoestrogens in the Salmonella/mammalian microsome assay. Mutat. Res. 78:317–320.

    CAS  Google Scholar 

  • Bates, R.P. and Matthews, R.F. 1975. Ascorbic acid and (3-carotene in soybeans as influenced by maturity, sprouting, processing and storage. Proc. Fla. State Hort. Soc. 88:266–271.

    Google Scholar 

  • Bau, H.M. and Debry, G. 1979. Germinated soybean protein products: chemical and nutritional evaluation. J. Am. Oil Chem. Soc. 56:160.

    CAS  Google Scholar 

  • Beleia, A., Thu Thao, L.T., and Ida, E.I. 1993. Lowering phytic phosphorus by hydration of soybeans. J. Food Sci. 58:375–388.

    CAS  Google Scholar 

  • Ben-Aziz, A., Crossman, S., Ascarelli, I., and Budowski, P. 1970. Linoleate oxidation induced by lipoxygenase and heme proteins: a direct spectrophotometric assay. Anal. Biochem. 34:88–100.

    CAS  Google Scholar 

  • Bernal-Lugo, I., Castillo, A., Diaz de Leon, F., Moreno, E., and Ramirez, J. 1991. Does phytic acid influence cooking rate in common beans? J. Food Biochem. 15:367–374.

    Google Scholar 

  • Blatny, P., Kvasnicka, F., and Kenndler, E. 1995. Determination of phytic acid in cereal grains, legumes, and feeds by capillary isotachophoresis. J. Agric. Food Chem. 43:129–133.

    CAS  Google Scholar 

  • Birk, Y. 1961. Purification and some properties of a highly active inhibitor of trypsin and a-chymotrypsin inhibitor from soya beans. Biochem. Biophys. Acta 54:378–381.

    CAS  Google Scholar 

  • Bodwell, C.E., and Marable, N.L. 1981. Effectiveness of methods for evaluating the nutritional quality of soybean protein. J. Am. Oil Chem. Soc. 58:475–483.

    CAS  Google Scholar 

  • Bonanome, A. and Grundy, S.M. 1988. Effect of dietary stearie acid on plasma cholesterol and lipoprotein levels. N. Engl. J. Med. 318:1244.

    CAS  Google Scholar 

  • Borchers, R., Mange, L.D., Nelson, S.O., and Stetson, L.E. 1982. Rapid improvement in nutritional quality of soybeans by dielectric heating. J. Food Sci. 37:333.

    Google Scholar 

  • Borhan, M. and Snyder, H.E. 1979. Lipoxygenase destruction in whole beans by combinations of heating and soaking in ethanol. J. Food Sci. 44:586.

    CAS  Google Scholar 

  • Bowman, D.E. 1944. Fractions derived from soybeans and navy beans which retard tryptic digestions of casein. Proc. Soc. Exp. Biol. Med. 57:139–140.

    CAS  Google Scholar 

  • Brown, B.D., Wei, L.S., Steinberg, M.P., and Villota, R. 1982. Minimizing protein insolubilization during thermal inactivation of lipoxygenase in soybean cotyledons. J. Am. Oil Chem. Soc. 59:88.

    CAS  Google Scholar 

  • Burkitt, D.P. 1971. Epidemiology of cancer of the colon and rectum. Cancer 28:3.

    CAS  Google Scholar 

  • Burkitt, D.P. and Trowell, H.C. (Ed.) 1975. Refined Carbohydrate Foods and Disease, Some Implications of Dietary fiber. Academic Press, London.

    Google Scholar 

  • Burks, A. W., Williams, L.W., Helm, R.M., Thresher, W., Brooks, J.R., and Sampson, H.A. 1991. Ch. 22, Identification of soy protein allergens in patients with atopic dermatitis and positive soy challenges; determination of change in allergenicity after heating or enzymatic digestion. In Nutritional and Toxicological Consequences of Food Processing,M. Friedman (Ed.). pp. 295–307. Plenum Press, New York.

    Google Scholar 

  • Calderon de la Barca, A.M., Vazquez-Moreno, L., and Robles-Burgueno, M.R. 1991. Active soybean lectin in foods: isolation and quantitation. Food Chem. 39:321.

    CAS  Google Scholar 

  • Calloway, D.H., Hickey, C.A., and Murphy, E.L. 1971. Reduction of intestinal gas-forming properties of legumes by traditional and experimental food processing methods. J. Food Sci. 36:251.

    CAS  Google Scholar 

  • Caragay, A.B. 1992. Cancer preventive foods and ingredients. Food Technol. 46(4):65.

    CAS  Google Scholar 

  • Carroll, K.K. and Kurowska, E. M. 1995. Soy consumption and cholesterol reduction: review of animal and human studies. J. Nutr. (suppl.) 125 (3S):594S–597S.

    CAS  Google Scholar 

  • Cassidy, A., Bingham, S., and Setchell, H.D.R. 1994. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J. Clin. Nutr. 60:333.

    CAS  Google Scholar 

  • Catsimpoolas, N. 1969. Isolation of glycinin subunit by isoelectric focusing in ureamercaptoethanol. FEBS Lett. 4:259–261.

    CAS  Google Scholar 

  • Catsimpoolas, N. and Ekenstam, C. 1969. Isolation of a, 13, and ti conglycinins. Arch. Biochem. Biophys. 129:490.

    CAS  Google Scholar 

  • Catsimpoolas, N., Campbell, T.G., and Meyer, E.W. 1969. Association-dissociation phenomenon in glycinin. Arch. Biochem. Biophys. 131:577.

    CAS  Google Scholar 

  • Cavins, J.F., Kwolek, W.E., Inglett, G.E., and Cowan, J.C. 1972. Amino acid analysis of soybean meal: interlaboratory study. J. Asso. Off. Anal. Chem. 55:686–691.

    CAS  Google Scholar 

  • Chang, R., Schwimmer, S. and Burr, H.K. 1977. Phytate: removal from whole dry beans by enzymatic hydrolysis and diffusion. J. Food Sci. 42:1098–1101.

    CAS  Google Scholar 

  • Chapkin, R.S. 1992. Reappraisal of the essential fatty acids. Ch. 18. In Fatty Acids and Their Health Implications, C.K. Chow (Ed.), pp. 429–435. Marcel Dekker, New York.

    Google Scholar 

  • Che Man, Y.B., Wei, L.S., and Nelson, A.I. 1989. Acid inactivation of soybean lipoxygenase with retention of protein solubility. J. Food Sci. 54(4):963.

    Google Scholar 

  • Chen, B.H-Y. and Mon, C.V. 1985. Solubility and forming properties of phytate-reduced soy protein isolate. J. Food Sci. 50:1139–1142.

    CAS  Google Scholar 

  • Chen, L.H. and Pan, S.H. 1977. Decrease of phytates during germination of pea seeds (Pisum sativum). Nutr. Rep. Int. 16:125.

    CAS  Google Scholar 

  • Chernick, S.S., Lepkovsky, S.S., and Chaikoff, I.L. 1948. A dietary factor regulating the enzyme content of the pancreas: changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soybean meal. Am. J. Physiol. 155:33.

    CAS  Google Scholar 

  • Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13:297–335.

    CAS  Google Scholar 

  • Chow, C.K. (Ed.). 1992. Fatty Acids and Their Health Implications. Marcel Dekker, New York.

    Google Scholar 

  • Christopher, J.P. and Axelrod, B. 1971. On the different positional specificities of peroxidation of linoleate shown by two isozymes of soybean lipoxygenase. Biochem. Biophys. Res. Commun. 44:731–736.

    CAS  Google Scholar 

  • Coates, J.B., Medeiros, J.S., Thanh, V.H., and Nielsen, N.C. 1985. Characterization of the subunits of β-conglycinin. Arch. Biochem. Biophys. 243:184–189.

    CAS  Google Scholar 

  • Chu, Y.-H. and Lin, J.-Y. 1993. Factors affecting the content of tocopherol in soybean oil. J. Am. Oil Chem. Soc. 70:1263–1268.

    CAS  Google Scholar 

  • Coon, C., Akavanichan, O., and Cheng, T. 1988. The effect of oligosaccharides on the nutritive value of soybean meal. In Proceedings of Soybean Utilization Alternatives, L. McCann (Ed.), p. 203–214. University of Minn. St. Paul, MN.

    Google Scholar 

  • Cooper, J.B., Chen, J.A., van Holst, G.-J. and Varner, J.E. 1987. Hydroxyproline-rich glycoproteins of plant cell walls. TIBS 12:24–27.

    CAS  Google Scholar 

  • Coward, L., Barnes, N.C., Setchell, K.D.R., and Barnes, S. 1993. Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41:1961–1967.

    CAS  Google Scholar 

  • Cristofaro, E., Mottu, F., and Wuhrmann, J.J. 1974. Involvement of the raffinose family of oligosaccharides in flatulence. Ch. 20. In Sugar in Nutrition, H.L. Sipple and K.W. McNutt (Ed.). Academic Press, New York.

    Google Scholar 

  • Cruz, R., Batistela, J.C., and Wosiaski, G. 1982. Microbial a-galactosidase for soymilk processing. J. Food Sci. 46:1196.

    Google Scholar 

  • de Muelenaere, H.J.H. 1964. Effect of heat treatment on the hemagglutinating activity of legumes. Nature 201:1029.

    Google Scholar 

  • Deshpande, S.S., Cheryan, M., and Salunkhe, D.K. 1984. Tannin analysis of food products. CRC Crit. Rev. Food Sci. Nutr. 24:401–449.

    Google Scholar 

  • Desikachar, H.S.R. and De, S.S. 1947. Role of inhibitors in soybeans. Science 106:421.

    CAS  Google Scholar 

  • DiPietro, C.M. and Liener, I.E. 1989. Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors. J. Agric. Food Chem. 37:39–44.

    CAS  Google Scholar 

  • Donatucci, D.A. 1983. The role of lectins in the nutritional toxicity of raw legumes. Ph.D. dissertation, University of Minnesota, St. Paul, MN.

    Google Scholar 

  • Dornbos, D.L. Jr. and Mullen, R.E. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J. Am. Oil Chem. Soc. 69(3):228–231.

    CAS  Google Scholar 

  • Eggum, B.O., and Beames, R.M. 1983. The nutritive value of seed proteins. In Seed Proteins,Biochemistry, Genetics, Nutritive Value. E. Gottschalk and H.P. Muller (Ed.). pp. 499–531. Martinus Nijhof/Junk, Hague.

    Google Scholar 

  • Eldridge, A. and Kwolek, W. 1983. Soybean isoflavones: effect of environment and variety on composition. J. Agric. Food Chem. 31:394–396.

    CAS  Google Scholar 

  • Eldridge, A.C., Warner, K.. and Wolf, W.J. 1977. Alcohol treatment of soybeans and soybean protein products. Cereal Chem. 54:1229.

    CAS  Google Scholar 

  • Enig, M.G., Atal, S., Keeney, M., and Sampugna, J. 1990. Isometric trans fatty acids in the U.S. diet. J. Am. Coll. Nutr. 9:471.

    CAS  Google Scholar 

  • Erdman, J.W. Jr. 1979. Oilseed phytates: nutritional implications. J. Am. Oil Chem. Soc. 56:736–741.

    CAS  Google Scholar 

  • Evans, C.D., McConnell, D.G., List, G.R., and Scholfield, C.R. 1969. Structure of unsaturated vegetable oil glycerides: direct calculation from fatty acid composition. J. Am. Oil Chem. Soc. 46:421.

    CAS  Google Scholar 

  • FAO/WHO, 1985. Energy and Protein Requirements, FAO/WHO Nutrition Meetings, Report Series 724. Food and Agriculture Organization/World Health Organization, Geneva.

    Google Scholar 

  • FAO/WHO, 1990. Protein Quality Evaluation. FAO/WHO Nutrition Meetings, Report Series 51. Food and Agriculture Organization/World Health Organization, Rome.

    Google Scholar 

  • Fenner, G.P. 1996. Low-temperature treatment of soybean (Glycine max) isoflavonoid aglycon extracts improves gas chromatographic resolution. J. Agric. Food Chem. 44(12):3727–3729.

    CAS  Google Scholar 

  • Fernando, S.M. and Murphy, P.A. 1990. HPLC determination of thiamin and riboflavin in soybeans and tofu. J. Agric. Food Chem. 38:163–167.

    CAS  Google Scholar 

  • Fleury, Y., Welti, D.H., Phillippossian, G., and Magnolato, D. 1992. Soybean (malonyl) isoflavones characterization and antioxidant properties. In Phenolic Compounds in Food and Their Effects on Health, Vol. II, M.-T. Huang, C.-T. Ho, and C.Y. Lee, (Ed.), pp. 98–113. American Chemical Society, Washington, DC.

    Google Scholar 

  • Fontes, E.P.B., Moreira, M.A., Davies, C.S., and Nielsen, N.C. 1984. Urea-elicited changes in relative electrophoretic mobility of certain glycinin and (3-conglycinin subunits. Plant Physiol. 76:840–843.

    CAS  Google Scholar 

  • Frazier, P.J. 1979. Lipoxygenase action and lipid binding in breadmaking. Baker’s Dig. 53(6):8–14.

    CAS  Google Scholar 

  • Friedman, M. and Gumbmann, M.R., 1986. Nutritional improvement of soy flour through inactivation of trypsin inhibitors by sodium sulfite. J. Food Sci. 51(5):1239–1241.

    CAS  Google Scholar 

  • Friedman, M., Brandon, D.L., Bates, A.H., and Hymowitz, T. 1991. Comparison of commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor: composition, nutritional value, and effects of heating. J. Agric. Food Chem. 39:327.

    CAS  Google Scholar 

  • Fujimaki, M., Arai, S., Kirigaya, N., and Sakurai, Y. 1965. Studies of flavor compounds in soybean. Part 1. aliphatic carbonyl compounds. Agric. Biol. Chem. 29:855–858.

    CAS  Google Scholar 

  • Fukushima, D. 1968. Internal structure of 7S and 11S globulin molecules in soybean proteins. Cereal Chem. 45:203.

    CAS  Google Scholar 

  • Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T., and Wakabayashi, K. 1996. Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 34(5):457–461.

    CAS  Google Scholar 

  • Gauthier, S.F., Vachon, C., Jones, J.D., and Savoie, L. 1982. Assessment of protein digestibility by in vitro enzymatic hydrolysis with simultaneous dialysis. J. Nutr. 112:1718.

    CAS  Google Scholar 

  • German, B., Damodaran, S., and Kinsella, J.E. 1982. Thermal dissociation behavior of soy proteins. J. Agric. Food Chem. 30:807–811.

    CAS  Google Scholar 

  • Green, G.M., Olds, B.A., Mathews, G., and Lyman, R.L. 1973. Protein as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med. 142:1162–1167.

    CAS  Google Scholar 

  • Green, G.M. and Lyman, R.L. 1972. Feedback regulation of pancreatic enzyme secretion in rats. Proc. Sci. Exp. Biol. Med. 140:6–12.

    CAS  Google Scholar 

  • Gumbmann, M.R., Spangler, W.L., Dugan, G.M., and Rackis, J.J. 1986. Safety of trypsin inhibitors in the diet: effects on the rat pancreas of long-term feeding of soy flour and soy protein isolate. In Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods, M. Friedman (Ed.), p. 33. Plenum Press, New York.

    Google Scholar 

  • Guzman, G.J. and Murphy, P.A. 1986. Tocopherols of soybean seeds and soybean curd (tofu). J. Agric. Food Chem. 34:791–795.

    CAS  Google Scholar 

  • Hajika, M., Igita, K., and Nakazawa, Y. 1991. A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Japan. J. Breed. 41:507–509.

    Google Scholar 

  • Hammerstrand, G.E., Black, L.T., and Glover, J.D. 1981. Trypsin inhibitors in soy products: modification of the standard analysis procedure. Cereal Chem. 58:42–45.

    Google Scholar 

  • Hammond, E.G. and Glatz, B.A. 1989. Biotechnology applied to fats and oils. Ch. 6. In Developments in Food Biotechnology, R. King and P.S.J. Cheetham (Ed.), Vol. 2 pp. 173–217. John Wiley & Sons, New York.

    Google Scholar 

  • Harada, K., Toyokawa, Y., and Kitamura, K. 1983. Genetic analysis of the most acidic lis globulin subunit and related characters in soybean seeds. Japan. J. Breed. 33:23–30.

    Google Scholar 

  • Hashizume, K., Nakamura, N., and Watanabe, T. 1975. Influence of ionic strength on conformation changes of soybean proteins caused by heating, and relationship of its conformation changes to gel formation. Agric. Biol. Chem. 39:1339–1347.

    CAS  Google Scholar 

  • Hefle, S.L. 1996. The Chemistry and Biology of Food Allergens. Food Technol. 50(3)86–92.

    CAS  Google Scholar 

  • Hegsted, D.M., McGandy, R.B., Myers, M.L., and Stare, F.J. 1965. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr. 17:281–295.

    CAS  Google Scholar 

  • Hessing, M., Bleeker, H., van Biert, M., Vlooswijk, R.A.A., and van Oort, M.G. 1994. Antigenicity of legume proteins. Food Agric. Immunol. 6:315–320.

    CAS  Google Scholar 

  • Hettiarachchy, N.S. and Ziegler, G.R. (Ed.) 1994. Protein Functionality in Food Systems. IFT Basic Symposium Series. Marcel Dekker, Inc. New York, NY.

    Google Scholar 

  • Hildebrand, D.F. and Hymowitz, T. 1981. Two soybean genotypes lacking lipoxygenase-1. J. Am. Oil. Chem. Soc. 58:583–586.

    CAS  Google Scholar 

  • Hildebrand, D.F., Hamilton-Kemp, T.R., Legg, C.S., and Bookjans, G. 1988. Plant lipoxygenases: occurrence, properties, and possible functions. Current Topics Plant Biochem. Physiol. 7:201–219.

    Google Scholar 

  • Howard, P.A., Lehnhardt, W.F., and Orthoefer, F.T. 1983. 7S and 11S vegetable protein fraction and isolation. U.S. Patent 4,368,151, Jan.11.

    Google Scholar 

  • Hsu, H.W., Vavak, D.L., Satterlee, L.D., and Miller, G.A. 1977. A multienzyme technique for estimating protein digestibility. J. Food Sci. 42:1269.

    CAS  Google Scholar 

  • Huang, A.S., Hsieh, O.A.L., and Chang, S.S. 1981. Characterization of the nonvolatile minor constituents responsible for the objectionable taste of defatted soybean flour. J. Food. Sci. 47:19.

    CAS  Google Scholar 

  • Hurburgh, C.R. Jr. 1994. Long-term soybean composition patterns and their effect on processing. J. Am. Oil Chem. Soc. 71(12):1425–1427.

    CAS  Google Scholar 

  • Hutton, K. and Foxcroft, P.D. 1975. Effect of processing temperature on some indices of nutritional significance for micronized soya beans. Proc. Nutr. Soc. 34:49A.

    Google Scholar 

  • Hymowitz, T., Collins, F.I., Panczner, J., and Walker, W.M. 1972. Relationship between the content of oil, protein, and sugar in soybean seed. Agron. J. 64:613–616.

    CAS  Google Scholar 

  • Hwang, K.M., Murphreee, S.A., and Sartorelli, A.C. 1974. A quantitative spectrophotomet-ric method to measure plant lectin-induced cell agglutination. Cancer Res. 34:3396.

    CAS  Google Scholar 

  • Ibrahim, N., Puri, R.K., Kapila, S., and Unklesbay, N. 1990. Plant sterols in soybean hulls. J. Food Sci. 55:271–272.

    CAS  Google Scholar 

  • Ikeda, K., Matsuda, Y., Katsumaru, A., Teranishi, M., Yamanoto, T., and Kishida, M. 1995. Factors affecting protein digestibility in soybean foods. Cereal Chem. 72(4):401.

    CAS  Google Scholar 

  • Jacks, T.J., Yatsu, L.Y., and Altschul, A.M. 1967. Isolation and characterization of peanut spherosome. Plant Physiol. 42:585–597.

    CAS  Google Scholar 

  • Johnson, C.D., Berry, M.F., and Weaver, C.M. 1985. Soybean hulls as an iron source for bread enrichment. J. Food Sci. 50:1275–1277.

    CAS  Google Scholar 

  • Jones, P.M.B. and Boulter, D. 1983. The cause of reduced cooking rate in Phaseolus vulgaris following adverse storage conditions. J. Food Sci. 48:623–627.

    Google Scholar 

  • JSNFS, 1984. Rice, soybean, and fish—Scientific approach to staple foods. In Japanese Society of Nutrition and Food Science. M. Fujimaki, G. Inoue, and T. Tanaka, (Ed.), Kouseikan Publishing, Tokyo.

    Google Scholar 

  • Kakade, M.I., Simons, N., and Liener, I.E. 1969. An evaluation of natural vs. synthetic substances for measuring the antitryptic activity of soybean samples. Cereal Chem. 46:518–526.

    CAS  Google Scholar 

  • Kakade, M.L., Hoffa, D.E., and Liener, I.E. 1973. Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr. 103:1172.

    Google Scholar 

  • Kaul, R., Read, J., and Mattiasson, B. 1991. Screening for plant lectins by latex agglutination test. Phytochemistry 30:4005.

    CAS  Google Scholar 

  • Kellor, R.L. 1974. Defatted soy flour and grits. J. Am. Oil Chem Soc. 51:77A–80A.

    CAS  Google Scholar 

  • Kennedy, A.R. 1993. Overview: anticarcinogenic activity of protease inhibitors. In Protease Inhibitors as Cancer Chemopreventive Agents, W. Troll and A.R. Kennedy (Ed.), pp. 9–64. Plenum Publishing, New York.

    Google Scholar 

  • Kennedy, A.R. 1994. Prevention of carcinogenesis by protease inhibitors. Cancer Res. (Suppl.) 54:1999s-2005s.

    CAS  Google Scholar 

  • Keys, A., Anderson, J.T., and Grade, F. 1957. Prediction of serum-cholesterol responses of man to changes in fats in diet. Lancet 2:955–966.

    Google Scholar 

  • Kikuchi, T.S., Ishii, S., Fukushima, D., and Yokotsuka, T. 1971. Food chemical studies on soybean polysaccharides. Part I. Chemical and physical properties of soybean cell wall polysaccharides and their changes during cooking. J. Agric. Chem. Soc. 45:228.

    CAS  Google Scholar 

  • Kim, Y.A. and Barbeau, W.E. 1991. Evaluation of SDS-PAGE method for estimating protein digestibility. J. Food Sci. 56(4):1082–1086.

    CAS  Google Scholar 

  • Kim, C.-S., Kamiya, S., Sato, T., Utsumi, S., and Kito, M. 1990. Improvement of nutritional value and functional properties of soybean glycinin by protein engineering. Protein Eng. 3:725–731.

    CAS  Google Scholar 

  • Kinney, A.J. 1996. Soybean biotechnology: improving soybean seed quality by genetic engineering. Paper No. 21A, presented at 87th American Oil Chemists’ Society Annual Meeting & Expo, Indianapolis, IN. April 28-May 1.

    Google Scholar 

  • Kitamura, K. 1984. Biochemical characterization of lipoxygenase lacking mutants, L-1-less, L-2-less, and L-3-less soybeans. Agric. Biol. Chem. 48:2339–2346.

    CAS  Google Scholar 

  • Kitamura, K. 1995. Genetic improvement of nutritional and food processing quality in soybean. Jap. Agric. Res. Quart. 29:1–8.

    Google Scholar 

  • Kitamura, K., Toyokawa, Y., and Harada, K. 1980. Polymorphism of glycinin in soybean seeds. Phytochemistry 19:1841–1843.

    CAS  Google Scholar 

  • Kitamura, K., Davies, C.S., Katzuma, N., and Nielsen, N.C. 1983. Genetic analysis of a null-allele for lipoxygenase-3 in soybean seed. Crop. Sci. 23:924–927.

    CAS  Google Scholar 

  • Klopfenstein, T. and Owen, F. 1988. Feeding soybean hulls to cattle. In Proceedings on Soybean Utilization Alternatives, L. McCann (Ed.), Feb. 16–18. University of Minnesota, St. Paul, MN.

    Google Scholar 

  • Knuckles, B.E. and Betschart, A.A. 1987. Effect of phytate and other myo-inositol phosphate esters on amylase digestion of starch. J. Food Sci. 52:719.

    CAS  Google Scholar 

  • Kobayashi, A., Tsuda, Y., Hirata, N., Kubota, K., and Kitamura, K. 1995. Aroma constituents of soybean IGlycine max (L.) Merrill] milk lacking lipoxygenase isozymes. J. Agric. Food Chem. 43:2449–2452.

    CAS  Google Scholar 

  • Kohle, H. and Kauss, H. 1980. Improved analysis of hemagglutination assays for quantitation of lectin activity. Anal. Biochem. 103:227.

    CAS  Google Scholar 

  • Kohyama, K. and Nishinari, K. 1993. Rheological studies on the gelation process of soybean 7S and 11S proteins in the presence of glucono-S-lactone. J. Agric. Food Chem. 41:8–14.

    CAS  Google Scholar 

  • Koide, T., Tsunasawa, S., and Ikenaka, T. 1973. Studies on soybean trypsin inhibitors and amino acid sequence around the reactive site of soybean trypsin inhibitor (Kunitz). Eur. J. Biochem. 32:408–416.

    CAS  Google Scholar 

  • Kon, S. and Sanshuck, D. 1981. Phytate content and its effect on cooking quality of beans. J. Food Sci. 44:1329–1335.

    Google Scholar 

  • Kris-Etherton, P.M. and Nicolosi, R.J. 1995. Trans Fatty Acids and Coronary Heart Disease Risk. International Life Sciences Institute (ILSI) Press, Washington, D.C. pp. 1–24.

    Google Scholar 

  • Krogdahl, A. and Holm, H. 1981. Soybean proteinase inhibitors and human proteolytic enzymes: selective inactivation of inhibitors by treatment with human gastric juice. J. Nutr. 111:2045.

    CAS  Google Scholar 

  • Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K., and Okubo, K. 1991. Malonyl isoflavone glucosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55:2227–2233.

    CAS  Google Scholar 

  • Kunitz, M. 1945. Crystallization of a trypsin inhibitor from soybeans. Science 101:668–669.

    CAS  Google Scholar 

  • Lalles, J.P., Dreau, D., Salmon, H., and Toullec, R. 1996. Identification of soyabean allergens and immune mechanisms of dietary sensitivities in preruminant calves. Res. Vet. Sci. 60:111–116.

    CAS  Google Scholar 

  • Lalles, J.P. and Peltre, G. 1996. Biochemical features of grain legume allergens in humans and animals. Nutri. Rev. 54(4):101–107.

    CAS  Google Scholar 

  • Lehnhardt, W.F., Gibson, P.W., and Orthoefer, F.T. 1983. Fraction and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures. U.S. patent 4,370,267, Jan. 25.

    Google Scholar 

  • Lei, M.-G. and Reeck, G.R. 1987. Two-dimensional electrophoretic analysis of the proteins of isolated soybean bodies and of the glycosylation of soybean proteins. J. Agric. Food Chem. 35:296–300.

    CAS  Google Scholar 

  • Levine, S.E., Weaver, C.M., and Kirleis, A.W. 1982. Accumulation of selected trace elements in hydroponically grown soybeans and distribution of the elements in processed soybean fractions. J. Food Sci. 47:1283.

    CAS  Google Scholar 

  • Liener, I.E. 1953. Soyin, a toxic protein from the soybean. I. Inhibition of rat growth. J. Nutr. 49:527.

    CAS  Google Scholar 

  • Liener, I.E. 1955. The photometric determination of the hemagglutinating activity of soyin and crude soybean extracts. Arch. Biochem. Biophys. 54:223.

    CAS  Google Scholar 

  • Liener, I.E. 1994. Implications of antinutritional components in soybean foods. CRC Crit. Rev. Food Sci. Nutr. 34(1):31–67.

    CAS  Google Scholar 

  • Liener, I.E., Deuel, H.J. Jr., and Frevold, H.L. 1949. The effect of supplemental methionine on the nutritive value of diets containing concentrates of the soybean trypsin inhibitor. J. Nutr. 39:325.

    CAS  Google Scholar 

  • Liener, I.E., Goodale, R.L., Deshmukh, A., Satterberg, T.L., Ward, G., DiPietro, C.M., Bankey, P.E., and Borner, J.W. 1988. Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology 94:419–427.

    CAS  Google Scholar 

  • Liener, I.E. and Kakade, M. 1980. Protease inhibitors. In Toxic Constituents of Plant Foodstuffs, I.E. Liener (Ed.), pp. 7–71. Academic Press, New York.

    Google Scholar 

  • List, G.R., Evans, C.D., Warner, K., Beal, R.E., Kwolek, W.F., Black, L.T., and Moulton, K.J. 1977. Quality of oil from damaged soybeans. J. Am. Oil. Chem. Soc. 54:8.

    CAS  Google Scholar 

  • Liu, K.S. 1986. Effects of processing and maturation on certain antinutritional factors in soybeans. M.S. thesis, Michigan State University, East Lansing, MI.

    Google Scholar 

  • Liu, K.S. 1995. Cellular, biological and physicochemical basis for the hard-to-cook defect in legume seeds. CRC Crit. Rev. Food Sci. Nutr. 35(4):263–298.

    CAS  Google Scholar 

  • Liu, K.S. and Markakis, P. 1987. Effect of maturity and processing on the trypsin inhibitor and oligosaccharides of soybeans. J. Food Sci. 52(1):222–223, 225.

    CAS  Google Scholar 

  • Liu, K.S. and Markakis, P. 1989a. Trypsin inhibition assay as related to limited hydrolysis of inhibitors. Anal. Biochem. 178:159–165.

    CAS  Google Scholar 

  • Liu, K.S. and Markakis, P. 1989b. An improved colorimetric method for determining antitryptic activity in soybean products. Cereal Chem. 66:415–422.

    CAS  Google Scholar 

  • Liu, K.S. and Markakis, P. 1990. Effect of the reactant mixing sequence on the chymotrypsin inhibition assay. Analyst 115:1143–1145.

    CAS  Google Scholar 

  • Liu, K.S. and Markakis, P. 1991. Aqueous ethanol extraction of soybean trypsin inhibitors and characterization of a calcium-sensitive fraction. J. Food Biochem. 15:159–168.

    CAS  Google Scholar 

  • Liu, K.S., Markakis, P., and Smith, D. 1990. Trypsin inhibition by free fatty acids and stearoyl-CoA. J. Agric. Food Chem. 38:1475–1478.

    CAS  Google Scholar 

  • Liu, K.S., Orthoefer, F., and Brown, E.A. 1995a. Association of seed size with genotypic variation in the chemical constituents of soybeans. J. Am. Oil Chem. Soc. 72(2):191.

    Google Scholar 

  • Liu, K.S., Brown, E.A., and Orthoefer, F. 1995b. Fatty acid composition within each structural part and section of a soybean seed. J. Agric. Food Chem. 43:381–383.

    CAS  Google Scholar 

  • Lolas, G.M., Palamidas, N.. and Markakis, P. 1976. The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat. Cereal Chem. 53:876.

    Google Scholar 

  • Lotan, R.H., Sieggelman, W., Lit, H., and Sharon, N. 1974. Subunit structure of soybean agglutinin. J. Biol. Chem. 249:1219.

    CAS  Google Scholar 

  • Lott, J.N.A. and Buttrose, M.S. 1978. Globoids in protein bodies of legume seed cotyledons. Aust. J. Plant Physiol. 5:89–111.

    CAS  Google Scholar 

  • Lykken, G.I., Hunt, J.R., Nielsen, E.J., and Dintzis, F.R. 1987. Availability of soybean hull iron fed to humans in a mixed Western meal. J. Food Sci. 52:1545–1548.

    Google Scholar 

  • MacLeod, G. and Ames, J. 1988. Soy flavor and its improvement. CRC Crit. Rev. Food Sci. Nutr. 27(4):219–401.

    CAS  Google Scholar 

  • McNiven, M.A., Grimmelt, B., MacLeod, J.A., and Voldeng, H. 1992. Biological characterization of a low trypsin inhibitor soybean. J. Food Sci. 57(6):1375–1377.

    CAS  Google Scholar 

  • Maga, J.A. 1982. Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Food Chem. 30:1–9.

    CAS  Google Scholar 

  • Magee, A.C. 1963. Biological responses of young rats fed diets containing genistin and genistein. J. Nutr. 80:151–156.

    CAS  Google Scholar 

  • Mahalko, J.R., Sandstead, H.H., Johnson, L.K., Inman, L.F., Milne, D.B., Warner, R.C., and Haubnz, E.A. 1984. Effect of consuming fiber from corn bran, soy hulls, or apple powder on glucose tolerance and plasma lipids in type II diabetes. Am. J. Clin. Nutr. 39:25.

    CAS  Google Scholar 

  • Makower, R.U. 1970. Extraction and determination of phytic acid in beans (Phaseolus vulgari.$). Cereal Chem. 47:288.

    CAS  Google Scholar 

  • Marczy, J.S., Simon, M.L., Mozsik, L., and Szajani, B. 1995. Comparative study on the lipoxygenase activities of some soybean cultivars. J. Agric. Food Chem. 43(2):313.

    CAS  Google Scholar 

  • Martin, M.J., Hulley, S.B., Browner, W.S., Kuller, L.H., and Wentworth, D. 1986. Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet 2:933–936.

    CAS  Google Scholar 

  • Masai, T., Wada, K., Hayakawa, K., Yoshihara, I., and Mitsuoka, T. 1987. Effects of soybean oligosaccharides on human intestinal flora and metabolic activities. Japan J. Bacteriol. 42(1):313.

    Google Scholar 

  • Mason, A.C., Weaver, C.M., Kimmel, S., and Brown, R.K. 1993. Effect of soybean phytate content on calcium bioavailability in mature and immature rats. J. Agric. Food Chem. 41:246–249.

    CAS  Google Scholar 

  • Mattson, F.M. and Grundy, S.M. 1985. Comparison of effects of dietary saturated, monosaturated. and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J. Lipid Res. 26:194–202.

    CAS  Google Scholar 

  • Mensink, R.P. and Katan, M.B. 1989. Effect of a diet enriched with monounsaturated or polyunsaturated fatty acids on levels of low-density and high-density lipoproteins in healthy women and men. New Engl. J. Med. 321:436–441.

    CAS  Google Scholar 

  • Mensink, R.P. and Katan, M.B. 1990. Effect of dietary trans fatty acids on high-density and low density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 323:439–445.

    CAS  Google Scholar 

  • Messina, M. and Barnes, S. 1991. The role of soy products in reducing cancer risk. J. Natl. Cancer Inst. 83:541–546.

    CAS  Google Scholar 

  • Messina, M., Messina, V., and Setchell, K.D.R. 1994. The Simple Soybean and Your Health. Avery Publishing Group, Garden City Park, New York.

    Google Scholar 

  • Mittal, B.K. and Steinkraus, K.H. 1975. Utilization of oliogosaccharides by lactic acid bacteria during fermentation of soymilk. J. Food Sci. 40:114.

    Google Scholar 

  • Montelongo, J-L., Chassy, B.M., and McCord, J.D. 1993. Lactobacillus salivarius for conversion of soy molasses into lactic acid. J. Food Sci. 58(4):863–866.

    CAS  Google Scholar 

  • Moreira, M.A., Hermodson, M.A., Larkins, B.A., and Nielsen, N.C. 1979. Partial characterization of the acidic and basic polypeptides of glycinin. J. Biol. Chem. 254:9921–9926.

    CAS  Google Scholar 

  • Moreira, M.A., Tavares, S.R., Ramos, V., and de Banos, E.G. 1993. Hexanal production and TBA number are reduced in soybean [Glycine max (L.) Men.] seeds lacking lipoxygenase isozymes 2 and 3. J. Agric. Food Chem. 41:103–106.

    CAS  Google Scholar 

  • Morita, S., Fukase, M., Hoshino, K., Fukuda, Y., Yamaguchi, M., and Morita, Y. 1994. A serine protease in soybean seeds that acts specifically on the native a subunit of 13conglycinin. Plant Cell Physiol. 35(7): 1049–1056.

    CAS  Google Scholar 

  • Morita, S., Fukase, M., Yamaguchi, M., Fukuda, Y., and Morita, Y. 1996. Purification, characterization, and crystallization of single molecular species of (3-conglycinin from soybean seeds. Biosci. Biotech. Biochem. 60(5): 866–873.

    CAS  Google Scholar 

  • Moroz, L.A. and Yang, W.H. 1980. Kunitz soybean trypsin inhibitor. A specific allergen in food anaphylaxis. New Engl. J. Med. 15:1126–1128.

    Google Scholar 

  • Murasawa, H., Sakamoto, A., Sasaki, H., and Harada, K. 1991. The effect of glycinin subunit on tofu-making. In Japan Part Proceedings of the International Conference on Soybean Processing and Utilization, K. Okubo (Ed.). pp. 53–57.

    Google Scholar 

  • Murphy, P.A. 1985. Structural characteristics of soybean glycinin and 13-conglycinin. In World Soybean Research Conference III: Proceedings,R. Shibles (Ed.), pp. 143–151. Westview Press, Boulder, CO.

    Google Scholar 

  • Murphy, P.A. and Resurrection, A.P. 1984. Varietal and environmental differences in soybean glycinin and 13-conglycinin concentration. J. Agric. Food Chem. 32:911.

    CAS  Google Scholar 

  • Mustakas, G.C., Albrecht, W.J., McGhee, J.E., Black, L.T., Bookwalter, G.N., and Griffin, E.L. Jr. 1969. Lipoxidase deactivation to improve stability, odor and flavor of full-fat soy flours. J. Am. Oil Chem. Soc. 46:623.

    CAS  Google Scholar 

  • Naim, M., Gestetner, B., Bondi, A., and Birk, Y. 1976. Antioxidative and antihemolytic activities of soybean isoflavones. J. Agric. Food Chem. 24:1174–1177.

    CAS  Google Scholar 

  • Naismith, W.E.F. 1955. Ultracentrifuge studies on soya bean protein. Biochim. Biophys. Acta 16:203–210.

    CAS  Google Scholar 

  • Nakamura, T., Utsumi, S., and Mori, T. 1986. Mechanism of heat-induced gelation and gel properties of soybean 7S globulin. Agric. Biol. Chem. 50:1287–1293.

    CAS  Google Scholar 

  • Neff, W.E., Selke, E., Mounts, T.L., Rinsch, W., Frankel, E.N., and Zeitoun, M.A.M. 1992. Effect of triacylglycerol composition and structures on oxidative stability of oils from selected soybean germplasm. J. Am. Oil Chem. Soc. 69(2):111–118.

    CAS  Google Scholar 

  • Nelson, T.S., Shieh, T.R., Wodzinski, R.L., and Ware, J.H. 1968. The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poult. Sci. 47:1842.

    CAS  Google Scholar 

  • Nelson, A.I., Steinberg, M.P., and Wei, L.S. 1976. Illinois process for separation of soymilk. J. Food Sci. 41:57–61.

    Google Scholar 

  • Nielson, N.C. 1985a. Structure of soy proteins. Ch. 2. In New Protein Foods, Vol 5. Seed Storage Proteins, A.M. Altschul and H.L. Wilcke (Ed.), pp. 27–64. Academic Press, Orlando, FL.

    Google Scholar 

  • Nielsen, N.C. 1985b. Structure and complexity of the 11S polypeptides in soybeans. J. Am. Oil Chem. Soc. 62(12):1680–1685.

    CAS  Google Scholar 

  • Nishiba, Y., Furuta, S., Hajika, M., lgita, K., and Suda, I. 1995. Hexanal accumulation and DETBA value in homogenate of soybean seeds lacking two or three lipoxygenase isozymes. J. Agric. Food Chem. 43(3):738–741.

    CAS  Google Scholar 

  • Nonaka, M., Toiguchi, S., Sakamoto, H., Kawajiri, H., Soeda, T., and Motoki, M. 1994. Changes caused by microbial transglutaminase on physical properties of thermally induced soy protein gels. Food Hydrocolloids, 8(1):1–8.

    CAS  Google Scholar 

  • NRC-NAS. 1972. Nutritional Requirements of Laboratory Animals. No. 10. 2nd Rev. Ed.

    Google Scholar 

  • Obata, A., Matsuura, M., and Kitamura, K. 1996. Degradation of sulfhydryl groups in soymilk by lipoxygenases during soybean grinding. Biosci. Biotech. Biochem. 60(8):1229–1232.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. 1973. Studies on soybean trypsin inhibitors VIII. Disulfide bridges in soybean Bowman-Birk protease inhibitors. J. Biochem. (Tokyo) 74:697.

    CAS  Google Scholar 

  • O’Dell, B.L. 1979. Effect of soy protein on trace mineral availability. In Soy Protein and Human Nutrition, H.L. Wilcke, D.R. Hopkins, and D.H. Waggle, (Ed.) Academic Press. New York.

    Google Scholar 

  • O’Dell, B.L. and deBoland, A. 1976. Complexation of phytate with proteins and cations in corn germ and oilseed meals. J. Agric. Food Chem. 24:804.

    Google Scholar 

  • Ogawa, T., Bando, N., Tsuji, H., Okajima, H., Nishikawa, K. and Sasaoka, K. 1991. Investigation of the IgE-binding proteins in soybeans by immunoblotting with the sera of the soybean-sensitive patients with atopic dermatitis. J. Nutrí. Sci. Vitaminol. 37:555–565.

    CAS  Google Scholar 

  • Ogawa, T., Tsuji, H., Bando, N., Kitamura, K., Zhu, Y.L., Hirano, H., and Nishikawa, K. 1993. Identification of the soybean allergenic protein, Gly m Bd 30 K, with the soybean seed 34-kDa oil-body-associated protein. Biosci. Biotech. Biochem. 57:1030–1033.

    CAS  Google Scholar 

  • Okubo, K., Iijima, M., Kobayashi, Y., Yoshikoshi, M., Uchida, T., and Kudou, S. 1992. Components responsible for the undesirable taste of soybean seeds. Biosci. Biotechnol. Biochem. 56:99–103.

    CAS  Google Scholar 

  • Olson, A., Gray, G.M., and Chiu, M.-C. 1987. Chemistry and analysis of soluble dietary fiber. Food Technol., Feb. pp. 71–80.

    Google Scholar 

  • Orf, J.H. 1988. Modifying soybean composition by plant breeding. In Proceedings: Soybean Utilization Alternatives, L. McCann (Ed.). p. 131. University of Minnesota, St. Paul, MN. Feb. 16–18.

    Google Scholar 

  • Orf, J.H. and Hymowitz, T.H. 1979. Inheritance of the absence of the Kunitz inhibitor in seed protein of soybeans. Crop Sci. 19:107.

    CAS  Google Scholar 

  • Osborne, T.B. and Mendel, L.B. 1917. The use of soybean as food. J. Biol. Chem. 32:369.

    CAS  Google Scholar 

  • Ozawa, K. and Laskowski, M. Jr. 1966. The reactive site of trypsin inhibitor. J. Biol. Chem. 241:3955–3961.

    CAS  Google Scholar 

  • Pallansch, M.J. and Liener, I.E. 1953. Soyin, a toxic protein from the soybean. II. Physical characterization. Arch. Biochem. Biophys. 45:366.

    CAS  Google Scholar 

  • Park, D.K., Terao, J., and Matsushita, S. 1983. Influence of the positions of unsaturated acyl groups in glycerides on autoxidation. Agric. Biol. Chem. 47:2251–2255.

    CAS  Google Scholar 

  • Perkins, E. G. 1995. Composition of soybeans and soy products. In Practical Handbook of Soybean Processing and Utilization, D.R. Erickson (Ed.), pp. 9–28. AOCS Press, Champaign, IL.

    Google Scholar 

  • Pernollet, J-C. 1978. Protein bodies of seeds: ultrastructure, biochemistry, biosynthesis and degradation. Phytochemistry 17:1473–1480.

    CAS  Google Scholar 

  • Pernollet, J-C. and Mosse, J. 1983. Structure and location of legume and cereal seed storage proteins. No. 20. In Seed Proteins, J. Daussant, J. Mosse, and J. Vaughan (Ed.), Annual Proceedings of the Phytochemical Society of Europe, pp. 155–190. Academic Press, London.

    Google Scholar 

  • Peters, J. and Czakor, B. 1989. Effect of extrusion cooking on trypsin inhibitor activity. Nahrung 33:275.

    Google Scholar 

  • Peterson, T.G. and Barnes, S. 1993. Genistein and biochanin A inhibit the growth of human prostate cancer cells, but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate 22:335–345.

    CAS  Google Scholar 

  • Pour-El, A., Nelson, S.O., Peck, E.E., Tjhio, B., and Stetson, L.E. 1981. Biological properties of VHF- and microwave-heated soybeans. J. Food Sci. 46:880–885, 895.

    CAS  Google Scholar 

  • Pratt, D.E. and Birac, P. M. 1979. Source of antioxidant activity of soybean and soy products. J. Food Sci. 44:1720–1722.

    CAS  Google Scholar 

  • Prattley, C.A. and Stanley, D.W. 1983. Protein-phytate interactions in soybeans. I. Localization of phytate in protein bodies and globoids. J. Food Biochem. 6:243–253.

    Google Scholar 

  • Pryde, E.H. 1980. Composition of soybean oil. Ch. 2. In Handbook of Soy Oil Processing and Utilization. S.R. Erickson, E.H. Pryde, O.L. Brekke, T.L. Mounts, and R.A. Falb, (Ed.), p. 13. American Oil Chemists’ Society, Champaign, IL.

    Google Scholar 

  • Pull, S.P., Pueppke, S.G., Hymowitz, T., and Orf, H.H. 1978. Soybean lines lacking 120,000-Da seed lectin. Science 200:1277.

    CAS  Google Scholar 

  • Rackis, J.J. 1974. Biological and physical factors in soybeans. J. Am. Oil Chem. Soc. 51:161A.

    CAS  Google Scholar 

  • Rackis, J.J., Honig, D.H., Sessa, D.J., and Steggerda, F.R. 1970. Flavor and flatulence factors in soybean protein products. J. Agric. Food Chem. 18:977.

    CAS  Google Scholar 

  • Read, R.J. and Jame, M.N.D. 1986. Introduction to the protease inhibitors: X-ray crystallography. In Protease Inhibitors, A.J. Barrett and G. Salvesen (Ed.). Elsevier, Amsterdam/ New York.

    Google Scholar 

  • Reseland, J.E., Holm, H., Jacobsen, M.B., Jenssen, T.G., and Hanssen, L.E. 1996. Protein-ase inhibitors induce selective stimulation of human trypsin and chymotrypsin secretion. J. Nutr. 126(3):634–642.

    CAS  Google Scholar 

  • Rios-Iriarte, B.J. and Barnes, R.H. 1966. The effect of overheating on certain nutritional properties of the protein of soybeans. Food Technol. 20:836.

    Google Scholar 

  • Ritter, M.A., Mon, C.V., and Thomas, R.L. 1987. In vitro digestibility of phytate-reduced and phenolics-reduced soy protein isolates. J. Food Sci. 52(2):325–341.

    CAS  Google Scholar 

  • Robinson, D.S., Wu, Z., Domoney, C., and Casey, R. 1995. Lipoxygenases and the quality of foods. Food Chem. 54:33–43.

    CAS  Google Scholar 

  • Saio, K. 1976. Soybeans resistant to water absorption. Cereal Foods World. 21:168.

    CAS  Google Scholar 

  • Saio, K. and Watanabe, T. 1966. Preliminary investigation on protein bodies of soybean seeds. Agric. Biol. Chem. 30:1133–1138.

    CAS  Google Scholar 

  • Saio, K. and Watanabe, T. 1968. Observation of soybean foods under electron microscope. J. Jap. Soc. Food Sci. Technol. 15:290–296.

    Google Scholar 

  • Saio, K., Kamiya, M., and Watanabe, T. 1969. Food processing characteristics of soybean 11S and 7S proteins. Part 1. Effect of difference of protein component among soybean varieties on formation of tofu-gel. Agric. Biol. Chem. 33:1301–1308.

    CAS  Google Scholar 

  • Saio, K., Yamagishi, T. and Yamauchi, F. 1986. Quantitative analysis of soybean proteins by densitometry on gel electrophoresis. Cereal Chem. 63(6):493–496.

    Google Scholar 

  • Salunkhe, D.K., Sathe, S.K., and Reddy, N.R. 1983. Legume lipids. In Chemistry and Biochemistry of Legumes, S.K. Arora (Ed.) Edward Arnold Pub. Ltd., London.

    Google Scholar 

  • Samoto, M., Akasaka, T., Mori, H., Manabe, M., Ookura, T., and Kawamura, Y. 1994. A simple and efficient procedure for removing the 34 KD allergenic soybean protein, Gly m I, from defatted soy milk. Biosci. Biotech. Biochem. 58(11):2123–2125.

    CAS  Google Scholar 

  • Samoto, M., Miyazaki, C., Akasaka, T.. Mori, H., and Kawamura, Y. 1996. Specific binding of allergenic soybean protein Gly m Bd 30 K with α’- and α-subunits of conglycinin in soy milk. Biosci. Biotech. Biochem. 60(6):1006–1010.

    CAS  Google Scholar 

  • Sampson, H.A. and McCaskill, C.C. 1985. Food hypersensitivity and dermatitis: evaluation of 113 patients. J. Pediatr. 107:669–675.

    CAS  Google Scholar 

  • Sandberg, A.S., Carlsson, N.G., and Svanberg, U. 1989. Effect of inositol, tri-, tetra-. penta-, and hexaphosphates on in vitro estimation of iron availability. J. Food Sci. 54(1): 159–161.

    CAS  Google Scholar 

  • Sattar, A. Neelofar, and Akhtar, M.A. 1990. Irradiation and germination effects on phytate, protein, and amino acids of soybeans. Qual. Plant. Plant Foods Hum. Nutr. 40:185.

    CAS  Google Scholar 

  • Satterlee, L.D., Kendrick, J.G., and Miller, G.A. 1977. Rapid in-vitro methods of measuring protein quality. Food Technol. 31(6):77.

    Google Scholar 

  • Senti, F.R., (Ed.) 1985. Health Aspects of Dietary Trans Fatty Acids. Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda, MD.

    Google Scholar 

  • Sharon, N. and Lis, H. 1972. Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949–959.

    CAS  Google Scholar 

  • Shibasaki, M., Suzuki, S., Tajima, S., Nemoto, H., and Kuroume T. 1980. Allergenicity of major components of soybean. Int. Arch. Allergy Appl. Immun. 61:441–448.

    CAS  Google Scholar 

  • Simons, P.C.M., Verseegh, H.A.J., Jongbloed, A.W., Kemme, P.A., Slump, P., Bos, K.D., Wolters, M.G.E., Beudeker, R.F., and Verschoor, G.J. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. J. Nutr. 64:225.

    Google Scholar 

  • Simopoulos, A.P. 1989. Executive summary, in Dietary w3 and w6 Fatty Acids—Biological Effects and Nutritional Essentiality, C. Galli and A.P. Simopoulos (Ed.), pp. 391–404. Plenum, New York.

    Google Scholar 

  • Sirtori, C.R., Even, R., and Lovati, M.R. 1993. Soybean protein diet and plasma cholesterol: from therapy to molecular mechanisms. Ann. N. Y. Acad. Sci. 676:188.

    CAS  Google Scholar 

  • Sissions, J.W. and Tolman, H. 1991. Anti-nutritional properties of soyabean antigens in calves. In Toxic Factors in Crop Plants. Proceedings of the Second Spring Conference, March 22, J.P.F. D’Mello and C.M. Duffus (Ed.). pp. 62–85. Edinburgh.

    Google Scholar 

  • Skrede, A. and Krogdahl, A. 1985. Heat affects nutritional characteristics of soybean meal and excretion of proteinases in mink and chicks. Nutr. Rep. Int. 32:479.

    CAS  Google Scholar 

  • Smith, A.K. and Circle, S.J. (Ed.) 1972. Soybeans: Chemistry and Technology. AVI Publishing, Westport, CT.

    Google Scholar 

  • Smith, A.K. and Nash, A.M. 1961. Water absorption of soybeans. J. Am. Oil Chem. Soc. 38:120.

    CAS  Google Scholar 

  • Smith, R.J. and Gallon, J.R. 1993. Nitrogen Fixation. Ch. 6. In Plant Biochemistry and Molecular Biology, P.J. Lea and R.C. Leegood (Ed.), pp. 129–153. John Wiley & Sons, Chichester.

    Google Scholar 

  • Smith, C., Megen, W.V., Twaalfhoven, L., and Hitchcock, C. 1980. The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 31:341–350.

    CAS  Google Scholar 

  • Staswick, P.E. and Nielsen, N.C. 1983. Characterization of a soybean cultivar lacking certain glycinin subunits. Arch. Biochem. Biophys. 223:1–8.

    CAS  Google Scholar 

  • Staswick, P.E., Hermodson, M.A., and Nielsen, N.C. 1981. Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem. 256:8752–8755.

    CAS  Google Scholar 

  • Steiner, R.F. and Frattali, V. 1969. Purification and properties of soybean protein inhibitors of proteolytic enzymes. J. Agric. Food Chem. 17:513–518.

    CAS  Google Scholar 

  • Streggerda, F.R., Richards, E.A., and Rackis, J.J. 1966. Effects of various soybean products on flatulence in the adult man. Proc. Soc. Expt. Biol. Med. 121:1235–1239.

    Google Scholar 

  • Suda, I., Hajika, M., Nishiba, Y., Furuta, S., and Igita, K. 1995. Simple and rapid method for the selective detection of individual lipoxygenase isozymes in soybean seeds. J. Agric. Food Chem. 43:742–747.

    CAS  Google Scholar 

  • Sudarmadji, S. and Markakis, P. 1977. The phytate and phytase of soybean tempeh. J. Sci. Food Agric. 28:381–383.

    CAS  Google Scholar 

  • Sutardi and Buckle, K.A. 1985. Reduction in phytic acid levels in soybeans during tempeh production, storage and frying. J. Food Sci. 50:260.

    CAS  Google Scholar 

  • Sykes, G.E. and Gayler, K.R. 1981. Detection and characterization of a new (3-conglycinin from soybean seeds. Arch. Biochem. Biophys. 210:525.

    CAS  Google Scholar 

  • Takasoye, M., Inoue, N. and Knuma, C. 1990. Clinical investigation of feces improvements by soybean oligosaccharides. Rinsho Toh Kenkyu (Clinics and Research), (in Japanese) 67:304–310.

    Google Scholar 

  • Thanh, V.H. and Shibasaki, K. 1976a. Major proteins of soybean seeds. A straightforward fraction and their characterization. J. Agric. Food Chem. 24(6):1117–1121.

    CAS  Google Scholar 

  • Thanh, V.H. and Shibasaki, K. 1976b. Heterogeneity of (3-conglycinin. Biochim. Biophys. Acta 439:326.

    CAS  Google Scholar 

  • Thanh, V.H. and Shibasaki, K. 1979. Major proteins of soybean seeds. Reconstitution of (3-conglycinin from its subunits. J. Agric. Food Chem. 26:695.

    Google Scholar 

  • Thanh, V.H., Okubo, K., and Shibasaki, K. 1975a. Isolation and characterization of the multiple 7S globulins of soybean proteins. Plant Physiol. 56:19–22.

    CAS  Google Scholar 

  • Thanh, V.H., Okubo, K., and Shibasaki, K. 1975b. The heterogeneity of the 7S soybean protein by Sepharose gel chromatography and disc gel electrophoresis. Agric. Biol. Chem. 39(7): 1501–1503.

    Google Scholar 

  • Thompson, D.B. and Erdman, J.W. 1982. Phytic acid determination in soybeans. J. Food Sci. 47:513–517.

    CAS  Google Scholar 

  • Tombs, M.P. 1967. Protein bodies of soybeans. Plant Physiol. 42:797–813.

    CAS  Google Scholar 

  • Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol., Oct., pp. 61–65.

    Google Scholar 

  • Torun, B., Vitery, F.E., and Young, V.R. 1981. Nutritional role of soya protein for humans. J. Am. Oil Chem. Soc. 58:400–406.

    CAS  Google Scholar 

  • Tsien, H.C., Jack, M.A., Schmidt, E.L., and Wold, F. 1983. Lectin in five soybean cultivars previously considered to be lectin-negative. Planta 158:128.

    CAS  Google Scholar 

  • Tsukamoto, C., Kawasakim, Y., Iwasaki, T., and Okubo, K. 1991. A process for the removal of glycosides during tofu production and an evaluation of the marketability of the final product. In Japan part of Proceedings of the International Conference on Soybean Processing and Utilization, K. Okubo (Ed.), pp. 47–51.

    Google Scholar 

  • Tsukamoto, C., Shimada, S., Igita, K., Kudou, S., Kokubun, M., Okubo, K., and Kitamura, K. 1995. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43:1184–1192.

    CAS  Google Scholar 

  • Turner, R.H. and Liener, I.E. 1975. The effect of the selective removal of hemagglutinins on the nutritive value of soybeans. J. Agric. Food Chem. 23:484.

    CAS  Google Scholar 

  • Utsumi, S. and Kinsella, J.E. 1985. Forces involved in soy protein gelation: effect of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate. J. Food Sci. 50:1278–1282.

    CAS  Google Scholar 

  • Utsumi, S., Gidamis, A.B., Kanamori, J., Kang, J., and Kito, M. 1993. Effects of deletion of disulfide bonds by protein engineering on the conformation and functional properties of soybean proglycinin. J. Agric. Food Chem. 41:687–691.

    CAS  Google Scholar 

  • Vahouny, G. and Kritchevsky, D. (Ed.) 1986. Dietary Fibers Basic and Clinical Aspects. Plenum Press, New York.

    Google Scholar 

  • Vaintraub, I.A. and Bulmaga, V.P. 1991. Effect of phytate on the in vitro activity of digestive enzymes. J. Agric. Food Chem. 39:859.

    CAS  Google Scholar 

  • Verdeal, K., Brown, R.R., Richardson, T., and Ryan, D.S. 1980. Affinity of phytoestrogens for estradiol binding proteins and effect of coumesterol on growth of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors. J. Natl. Cancer Inst. 64:285–290.

    CAS  Google Scholar 

  • Vessby, B. 1994. Implications of long-chain fatty acid studies. INFORM 5(2):182–185.

    Google Scholar 

  • Walker, A.R.P., Fox, F.W., and Irving, J.T. 1948. Human mineral metabolism. 1. Effect of bread rich in phytate phosphorus on the metabolism of certain mineral salts with special reference to calcium. J. Biochem. 42:452–462.

    CAS  Google Scholar 

  • Walter, E.D. 1941. Genistin (an isoflavone glycoside) and its aglucone, genistein from soybeans. J. Am. Chem. Soc. 63:3273–3276.

    CAS  Google Scholar 

  • Wang, H.-J. and Murphy, P.A. 1994a. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year and location. J. Agric. Food Chem. 42:1674–1677.

    CAS  Google Scholar 

  • Wang, H.-J. and Murphy, P.A. 1994b. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42:1666–1673.

    CAS  Google Scholar 

  • Wang, H.J. and Murphy, P.A. 1996. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44:2377–2383.

    CAS  Google Scholar 

  • Wang, H.L., Swain, E.W., Wallen, L.L., and Hasseltine, C. W. Free fatty acids identified as antitryptic factor in soybeans fermented by Rhizopus oligosporus. J. Nutr. 105:1351–1355.

    Google Scholar 

  • Wardlaw, G.M. and Snook, J.T. 1990. Effect of diets high in butter, corn oil, or high-oleic acid sunflower oil on serum lipids and apolipoproteins in man. Am. J. Clin. Nutr. 51:815–821.

    CAS  Google Scholar 

  • Watanabe, M. 1993. Hypoallergenic rice as a physiologically functional food. Trends Food Sci. Technol. 4:125–128.

    CAS  Google Scholar 

  • Weaver, C.M., Nelson, N., and Elliott, J.G. 1984. Bioavailability of iron to rats from processed soybean fractions determined by intrinsic and extrinsic labeling techniques. J. Nutr. 114:1042–1048.

    CAS  Google Scholar 

  • Wheeler, E.L. and Ferrel, R.E. 1971. A method for phytic acid determination in wheat and wheat fraction. Cereal Chem. 48:312.

    CAS  Google Scholar 

  • Whitaker, J.R. 1991. Lipoxygenase. In Oxidative Enzymes in Foods, D.S. Robinson and N.A.M. Eskin (Ed.). pp. 175–215. Elsevier Applied Sci., London.

    Google Scholar 

  • Wilkens, W.F., Mattick, L.R., and Hand, D.B. 1967. Effect of processing method on oxidative off-flavor of soybean milk. Food Technol. 21:86.

    Google Scholar 

  • Wilson, L.A. 1996. Comparison of lipoxygenase-null and lipoxygenase-containing soybeans for foods. Ch. 12. In Lipoxygenase and Lipoxygenase Pathway Enzymes, G.J. Piazza (Ed.), pp. 209–225. AOCS Press, Champaign, IL.

    Google Scholar 

  • Wolf, W.J. 1969. Soybean protein nomenclature: a progress report. Cereal Sci. Today, 14:75, 76, 78, 129.

    Google Scholar 

  • Wolf, W.J. 1993. Sulfhydryl content of glycinin: effect of reducing agents. J. Agric. Food Chem. 41:168–176.

    CAS  Google Scholar 

  • Wolf, W.J. and Briggs, D.R. 1959. Purification and characterization of the 11S component of soybean proteins. Arch. Biochem. Biophys. 85:186–199.

    CAS  Google Scholar 

  • Wolf, W.J. and Cowan, J.C. (Ed.). 1975. Soybeans as a Food Source. CRC Press, Cleveland, OH.

    Google Scholar 

  • Wolf, W.J., Babcock, G.E., and Smith, A.K. 1961. Ultracentrifugal differences in soybean protein composition. Nature 191:1395–1396.

    CAS  Google Scholar 

  • Wong, E. and Flux, D.S. 1962. Estrogenic activity of red clover isoflavones and some of their degradation products. J. Endocrinol. 24:341–348.

    CAS  Google Scholar 

  • Woodham, A.A. and Deans, P.S. 1975. Amino acid requirements of growing chickens. Br. Poult: Sci. 16:269–287.

    CAS  Google Scholar 

  • Wu, Y.V. and Sessa, D.J. 1994. Conformation of Bowman-Birk inhibitor. J. Agric. Food Chem. 42:2136–2138.

    CAS  Google Scholar 

  • Yabuuchi, S., Lister, R.M., Axelrod, B., Wilcox, J.R., and Nielsen, N.C. 1982. Enzyme-linked immunosorbent assay for the determination of lipoxygenase isoenzymes in soybean. Crop Sci. 22:333–337.

    CAS  Google Scholar 

  • Yamauchi, F., Sato, M., Sato, W., Kamata, Y., and Shibasaki, K. 1981. Isolation and identification of a new type of (3-conglycinin in soybean globulins. Agric. Biol. Chem. 45:2863–2868.

    CAS  Google Scholar 

  • Yamauchi, F., Yamagishi, T.. and Iwabuchi, S. 1991. Molecular understanding of soybean protein. Food Rev. Int. 7:283–322.

    CAS  Google Scholar 

  • Young, V.R. 1991. Soy protein in relation to human protein and amino acid nutrition. J. Am. Diet. Asso. 91(7):828–835.

    CAS  Google Scholar 

  • Young, V.R. and Janghorbani, M. 1981. Soy proteins in human diets in relation to bioavailability of iron and zinc: a brief review. Cereal Chem. 58:12.

    CAS  Google Scholar 

  • Young, V.R. and Scrimshaw, N.S. 1978. Nutritional evaluation of protein and protein requirements. In Protein Resources and Technology, M. Milner, N.S. Scrimshaw, and D.I.C. Wang (Ed.). AVI Publishing, Westport, CT.

    Google Scholar 

  • Young, V.R., Bier, D.M., and Pellett, P.L. 1989. A theoretical basis for increasing current estimates of the amino acid requirements in adult man, with experimental support. Am. J. Clin. Nutr. 50:80–92.

    CAS  Google Scholar 

  • Zarkadas, C.G., Yu, Z., Voldeng, H.D., and Minero-Amador, A. 1993. Assessment of the protein quality of a new high-protein soybean cultivar by amino acid analysis. J. Agric. Food Chem. 41:616–623.

    CAS  Google Scholar 

  • Zemel, M. 1984. In vitro evaluation of the effect of ortho-, tripoly-and hexametaphosphate on zinc, iron and calcium bioavailability. J. Food Sci. 49:1562–1565.

    CAS  Google Scholar 

  • Zock, P.L. and Katan, M.B. 1992. Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. Lipid Res. 33:399.

    CAS  Google Scholar 

  • Zuo, Y., Fahey, G.C., Merchen, N.R., and Bajjalieh, N.L. 1996. Digestion responses to low oligosaccharide soybean meal by ileally-cannulated dogs. J. Animal Sci. 74(10):2441–2449.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, K. (1997). Chemistry and Nutritional Value of Soybean Components. In: Soybeans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1763-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1763-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5711-7

  • Online ISBN: 978-1-4615-1763-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics