Skip to main content

Acetogenesis at Low Temperature

  • Chapter
Acetogenesis

Abstract

Most habitats on earth have a low average annual temperature, and more than 80% of the biosphere is permanently cold. In general, the study of mesophilic processes have dominated the interests of biologists. However, though poorly characterized, microbial processes in cold climatic zones may play important roles in the biological cycles and global ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bak, F. 1988. Sulfatreduzierende Bakterien und ihre Aktivität im Litoralsediment der Unteren Gull (Ãœberlinger See) Hartung-Gorre Verlag, pp. 154–158. Konstanz, Germany.

    Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from hydrogen and carbon dioxide in anaerobic habitats. Arch. Microbiol. 120:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Threbath, H. P. Mayer, and H. Schutz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • Diekert, G. 1992. The acetogenic bacteria. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer (eds.), Vol. 1, pp. 517–533. Springer-Verlag, New York.

    Google Scholar 

  • Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 417–468. Wiley, New York.

    Google Scholar 

  • Drake, H. L. 1992. Acetogenesis and acetogenic bacteria. In: Encyclopedia of Microbiology, Vol. 1, J. Lederberg (ed.), pp. 1–15. Academic Press, San Diego, CA.

    Google Scholar 

  • Drake, H. L. 1993. CO2, reductant, and the autotrophic acetyl-CoA pathway: alternative origins and destinations. In: Microbial Growth on C 1 Compounds, J. C. Murrell, and D. P. Kelly (eds.), pp. 493–507. Intercept Ltd., Andover, England.

    Google Scholar 

  • Evans, W. C., and G. Fuchs. 1988. Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42:289–317.

    Article  PubMed  CAS  Google Scholar 

  • Harriss, R. C., E. Gorham, D. I. Sebacher, K. B. Bartlett, and P. A. Flebbe. 1985. Methane flux from northern peatlands. Nature 315:652–654.

    Article  CAS  Google Scholar 

  • Jones, J. G., and B. M. Simon. 1985. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49:944–948.

    PubMed  CAS  Google Scholar 

  • Kaiser, J. P., and K. W. Hanselmann. 1982. Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch. Microbiol. 133: 185–194.

    Article  CAS  Google Scholar 

  • Kotsyurbenko, O. R., A. N. Nozhevnikova, and G. A. Zavarzin. 1992a. Anaerobic degradation of organic matter by psychrophilic microorganisms. Zh. Obshch. Biol. 53:159–175 (in Russian).

    CAS  Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, and A. N. Nozhevnikova. 1992. Psychrotrophic homoacetogenic bacteria from several environments, Abstr. C136. 7th Int. Symp. on Microbial Growth on C-1 Compounds, August 1992, Warwick, UK., 1992.

    Google Scholar 

  • Kotsyurbenko, O. R., A. N. Nozhevnikova, S. V. Kalyuzhnyy, and G. A. Zavarzin. 1993. Methanogenic fermentation of cattle manure under psychrophilic conditions. Mikrobiologiya 62:761–772 (in Russian).

    CAS  Google Scholar 

  • Kotsyurbenko, O. R., M. V. Simankova, N. P. Bolotina, T. N. Zhilina, A. N. Nozhevnikova, and G. A. Zavarzin. In preparation. New psychrotrophic acetogenic bacterium from several environments.

    Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ. Microbiol 45:1310–1315.

    PubMed  CAS  Google Scholar 

  • Lux, M. F., and H. L. Drake. 1992. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol Lett. 95:49–56.

    Article  CAS  Google Scholar 

  • Martin, D. R., L. L. Lundie, R. Kellum, and H. L. Drake. 1983. Carbon monoxidedependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr. Microbiol 8:337–340.

    Article  CAS  Google Scholar 

  • Nozhevnikova, A. N., O. R. Kotsyurbenko, and G. A. Zavarzin. 1992. Methanogenesis from organic matter at low temperature. In: Int. Course on Anaerobic Waste Water Treatment, Case Studies. IHE Delft, Agricult. Univ. Wageningen, The Netherlands, pp. 72–96.

    Google Scholar 

  • Panikov, N. S., and V. V. Zelenev. 1992. Emission of CO2 from northern wetlands to atmosphere: dynamics, controlling factors and tentative mechanisms, pp. 208–216. 1st International Conference on Cryopedology, Pushchino, 1992 (in Russian).

    Google Scholar 

  • Parshina, S. N., A. N. Nozhevnikova, and S. V. Kalyuzhnyy. 1993. Degradation of protein substrates by microflora of pig’s manure at low temperature. Mikrobiologiya 62:169–180 (in Russian).

    CAS  Google Scholar 

  • Phelps, J., and J. G. Zeikus. 1984. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ. Microbiol 48:1088–1095.

    PubMed  CAS  Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett. 1:255–258.

    Article  CAS  Google Scholar 

  • Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic non-sporeforming bacterium. Arch. Microbiol. 133:195–201.

    Article  CAS  Google Scholar 

  • Schink, B., and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: The Prokaryotes, 2nd ed., A. Balows et al. (eds.), Vol. II, pp. 1925–1936. Springer-Verlag, New York.

    Google Scholar 

  • Schink, B., A. Brune, and S. Schnell. 1992. Anaerobic degradation of aromatic compounds. In: Microbial Degradation of Natural Products, G. Winkelmann (ed.), pp. 220–242. VCH Publishers, New York.

    Google Scholar 

  • Slobodkin, A. I., N. S. Panikov, and G. A. Zavarzin. 1992. Microbiological methane production and consumption in the tundra and middle taiga bogs. Mikrobiologiya 61:683–691 (in Russian).

    CAS  Google Scholar 

  • Sutter, K., K. Egger, and A. Wellinger. 1987. Psychrophilic methane production: a low rate but economically viable technique. In: Alternative Energy Sources VII, T. N. Veziroglu (ed.), Vol. 4, pp. 87–98. Hemisphere, Washington, D.C.

    Google Scholar 

  • Svensson, B. H. 1984. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate of hydrogen. Appl. Environ. Microbiol. 48:389–394.

    PubMed  CAS  Google Scholar 

  • Svensson, B. H., and T. Rosswall. 1984. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43:341–350.

    Article  CAS  Google Scholar 

  • Svetlichny, V. A., T. G. Sokolova, N. A. Kostrikina, and G. A. Zavarzin. 1991. Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands. Microb. Ecol. 21:1–10.

    Article  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Young, L. Y., and A. C. Frazer. 1987. The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol. J. 5:261–293.

    Article  CAS  Google Scholar 

  • Whitman, W. B. 1985. Methanogenic bacteria. In: The Bacteria, C. R. Woese and R. S. Wolfe (eds.), Vol. 8, pp. 3–84. Academic Press, San Diego, CA.

    Google Scholar 

  • Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, J. M. Shively and L. L. Barton (eds.), pp. 201–250. Academic Press, San Diego, CA.

    Google Scholar 

  • Zavarzin, G. A. 1986. Trophic relations in methanogenous community. Izv. AN USSR. Ser. Biol. 3:341–360 (in Russian).

    Google Scholar 

  • Zavarzin, G. A., O. R. Kotsyurbenko, T. I. Soloviova, and A. N. Nozhevnikova. 1993. The temperature threshold in the development of methanogenic versus acetogenic community from the tundra soil. Dokl AN. 329:792–794.

    Google Scholar 

  • Zeeman, G., T. J. M. Vens, M. E. Koster-Treffers, and G. Lettinga. 1988. Start-up of low temperature digestion of manure. In Anaerobic Digestion, E. R. Hall and P. N. Hobson (eds.) 5th Int. Symp. on Anaerobic Digestion, pp. 397–405. Pergamon Press, Eisford, N.Y.

    Google Scholar 

  • Zeikus, J. G., R. Kerby, and J. A. Krzycki. 1985. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Nozhevnikova, A.N., Kotsyurbenko, O.R., Simankova, M.V. (1994). Acetogenesis at Low Temperature. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics