Skip to main content

Gut Environment and Evolution of Mutualistic Fermentative Digestion

  • Chapter
Gastrointestinal Microbiology

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

The gastrointestinal tract is a specialized tube divided into various well-defined anatomical regions extending from the lips to the anus. However, for the purposes of this series concerning the ecology, physiology, metabolism, and genetics of gastrointestinal microbes, discussion is restricted to the stomach (rumen-reticulum, crop, gizzard), small intestine, and large intestine (cecum and colon). Large populations of microorganisms inhabit the gastrointestinal tract of all animals and form a closely integrated ecological unit with the host. This complex, mixed, microbial culture comprising bacteria, ciliate and flagellate protozoa, anaerobic phycomycete fungi, and bacteriophage can be considered the most metabolically adaptable and rapidly renewable organ of the body, which plays a vital role in the normal nutritional, physiological, immunological, and protective functions of the host animal. Development of microbial populations in the alimentary tract of higher animals commences soon after birth. The processes involved in the establishment of microbial populations are complex, involving succession of microorganisms and many microbial and host interactions eventually resulting in dense, stable populations inhabiting characteristic regions of the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander M (1971) Microbial Ecology. New York: John Wiley.

    Google Scholar 

  • Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89: 3972–2976.

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1994) Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60: 360–365.

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169.

    PubMed  CAS  Google Scholar 

  • Barnard EA (1969) Biological function of pancreatic ribonuclease. Nature 221: 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Berg RD (1992) Translocation and the indigenous gut flora. In: Fuller R, ed. Probiotics: The Scientific Basis, pp. 55–58. New York: Chapman and Hall.

    Google Scholar 

  • Berg RD, Savage DC (1972) Immunological responses and microorganisms indigenous to the gastrointestinal tract. Am J Clin Nutr 25: 1364–1371.

    PubMed  CAS  Google Scholar 

  • Berg RD, Savage DC (1975) Immune response of specific pathogen-free and gnotobiotic mice to antigens of indigenous and non-indigenous microorganisms. Infect Immun 11: 320–329.

    PubMed  CAS  Google Scholar 

  • Collinson ME, Hooker JJ (1991) Fossil evidence of interactions between plants and planteating mammals. Phil Trans R Soc Lond B 333: 197–200.

    Article  CAS  Google Scholar 

  • Demment MW, Van Soest PJ (1985) A nutritional explanation for body-size patterns of ruminant and non-ruminant herbivores. Am Nat 125: 641–672.

    Article  Google Scholar 

  • Dierenfeld ES, Hintz, HF, Robertson JB, Van Soest PJ, Oftedal OT (1982) Utilization of bamboo by the giant panda. J Nutr 112: 636–641.

    PubMed  CAS  Google Scholar 

  • Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants I. J Biol Chem 259: 11607–11616.

    PubMed  CAS  Google Scholar 

  • Dominguez-Bello MG, Michelangeli F, Ruiz MC, Garcia A, Rodriguez E (1994) Ecology of the folivorous hoazin (Opisthocomus hoazin) on the Venezuelan plains. Auk 111: 643–681.

    Google Scholar 

  • Dubos R, Schaedler RW, Costello R, Hoet P (1965) Indigenous, normal and autochthonous flora of the gastrointestinal tract. J Exp Med 122: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Farlow JO (1987) Speculations about the diet and digestive physiology of herbivorous dinosaurs. Paleobiology 13: 60–72.

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and Evolution in Anoxic Worlds. London: Oxford University Press.

    Google Scholar 

  • Foo MC, Lee A (1972) Immunological response of mice to members of the autochthonous intestinal microflora. Infect Immun 6: 525–532.

    PubMed  CAS  Google Scholar 

  • Grajal A, Strahl SD, Parra R, Dominguez MG, Neher A (1989) Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245: 1236–1238.

    Article  PubMed  CAS  Google Scholar 

  • Grajal A, Strahl SD (1991) A bird with the guts to eat leaves. Nat Hist 8/91: 48–55.

    Google Scholar 

  • Grauer D (1993) Molecular phylogeny and the higher classification of eutherian mammals. Trends Ecol Evol 8: 141–147.

    Article  Google Scholar 

  • Grauer D, Higgins DG (1994) Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol Biol Evol 11: 357–364.

    Google Scholar 

  • Grauer D, Duret L, Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335.

    Article  Google Scholar 

  • Guthrie RD (1984) Mosaics, allelochemics, and nutrients: an ecological theory of late Pleistocene megafaunal extinctions. In: Martin DS, Klein RG, eds. Quartenary Extinctions: a Prehistoric Revolution, pp. 259–298. Tucson: University of Arizona Press.

    Google Scholar 

  • Hedges SB, Simmons MD, Van Dijk MAM, Caspers G-J, De Jong WW, Sibley CG (1995) Phylogenetic relationships of the hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA 92: 11662–11665.

    Article  PubMed  CAS  Google Scholar 

  • Herd RM, Dawson TJ (1984) Fiber digestion in the emu, Dramaius novaehollandiae, a large ratite bird with a simple gut and high rates of passage. Physiol Zool 57: 70–84.

    Google Scholar 

  • Hume ID, Warner ACI (1980) Evolution of microbial digestion in mammals. In: Ruckebusch Y, Thievend P, eds. Digestive Physiology and Metabolism in Ruminants, pp. 665–684. Lancaster: MTD Press.

    Chapter  Google Scholar 

  • Hungate RE (1976) Microbial activities related to mammalian digestion and absorption of food. In: Spiller GA, Amen RJ, eds. Fiber in Human Nutrition, pp. 131–149. New York: Plenum Press.

    Chapter  Google Scholar 

  • Hungate RE (1984) Microbes of nutritional importance in the alimentary tract. Proc Nutr Soc 43: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J. Biol Chem 264: 11387–11393.

    PubMed  CAS  Google Scholar 

  • Irwin DM, Prager EM, Wilson AC (1992) Evolutionary genetics of ruminant lysozymes. Anim Genet 23: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Janis C (1976) The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30: 757–774.

    Article  Google Scholar 

  • Joliès J, Joliès P, Bowman BH, Prager EM, Stewart C-B, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28: 528–535.

    Article  Google Scholar 

  • Jermann TM, Opitz JG, Stackhouse J, Benner SA (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374: 57–59.

    Article  PubMed  CAS  Google Scholar 

  • Kornegay JR., Schilling JW, Wilson AC (1994) Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin. Mol Biol Evol 11: 921–928.

    PubMed  CAS  Google Scholar 

  • Langer P (1991) Evolution of the digestive tract in mammals. Verh Dtsch Zool Ges 84: 169–193.

    Google Scholar 

  • Li WH, Gouy M, Sharp PM, O’Huigin, Yang YW (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora, and molecular clocks. Proc Natl Acad Sci USA 87: 6703–6707.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Dorn S, Springer N, Kirchhof G, Schleifer KH (1994) PCR-based preparation of 235 rRNA-targeted, group specific polynucleotide probes. Appl Environ Microbiol 60: 3236–3244.

    PubMed  CAS  Google Scholar 

  • Mackie RI (1987) Microbial digestion of forages in herbivores. In: Hacker JB, Ternouth JH, eds. The Nutrition of Herbivores, pp. 233–265. Sydney: Academic Press.

    Google Scholar 

  • Morton ES (1978) Avian arboreal folivores: why not. In: Montgomery GG et al., eds. The Ecology of Arboreal Folivores, pp. 123–130. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Parra R (1978) Comparison of foregut and hindgut fermentation in herbivores. In: Montgomery GG et al., eds. The Ecology of Arboreal Folivores, pp. 205–229. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Rosenthal GA, Janzen DH (1979) Herbivores: Their Interaction with Plant Secondary Metabolites. New York: Academic Press.

    Google Scholar 

  • Savage DC (1977) Interactions between the host and its microbes. In: Clarke RTJ, Bauchop T, eds. Microbial Ecology of the Gut, pp. 277–310. New York: Academic Press.

    Google Scholar 

  • Stackhouse J, Presnell SR, McGeehan GM, Nambiar KP, Benner SA (1990) The ribonuclease from an extinct bovid ruminant. FEBS Lett 262: 104–106.

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M, eds. Nucleic Acid Techniques in Bacterial Systematics, pp. 205–248. Chichester: John Wiley.

    Google Scholar 

  • Stewart CB, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330: 401–404.

    Article  PubMed  CAS  Google Scholar 

  • Swart D, Mackie RI, Hayes JP (1993a) Influence of livemass, rate of passage and site of digestion on energy metabolism and fiber digestion in the ostrich (Struthio camelus var. domesticus). S Afr J Anim Sci 23: 119–126.

    Google Scholar 

  • Swart D, Mackie RI, Hayes JP (1993b) Fermentative digestion in the ostrich (Struthio camelus var. domesticus), a large avian species that utilizes cellulose. S Afr J Anim Sci 23: 127–135.

    Google Scholar 

  • Tamminga S (1979) Protein degradation in the forestomach of ruminants. J Anim Sci 49: 1615–1630.

    CAS  Google Scholar 

  • Taylor MA (1993) Stomach stones for feeding or buoyancy? The occurrence and function of gastroliths in marine tetrapods. Phil Trans R Soc Lond B 341: 163–175.

    Article  Google Scholar 

  • Thomasson JR, Voorhies MR (1990) Grasslands and grazers. In: Briggs DEG, Crowther PR, eds. Paleobiology: A Synthesis, pp. 84–87. Oxford: Blackwell Scientific.

    Google Scholar 

  • Williams AG, Coleman GS (1988) The rumen protozoa. In: Hobson PN, ed. The Rumen Microbial Ecosystem, pp. 77–128. New York: Elsevier.

    Google Scholar 

  • Woese CR, Kandier O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87: 4576–4579.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mackie, R.I. (1997). Gut Environment and Evolution of Mutualistic Fermentative Digestion. In: Mackie, R.I., White, B.A. (eds) Gastrointestinal Microbiology. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4111-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4111-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6843-4

  • Online ISBN: 978-1-4615-4111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics