Skip to main content

Mechanisms of Bacterial Adhesion at Solid-Water Interfaces

  • Chapter

Abstract

Any consideration of the mechanisms whereby bacteria adhere to solid surfaces must take account of the surface properties of the bacteria as well as those of the substrata concerned. Properties of bacterial surfaces have been dealt with by Wicken (Chapter 2) and those of apparently inert substratum surfaces by Loeb (Chapter 5). Bacteria can be considered as living colloidal particles (Marshall, 1973, 1976). They range in size from about 0.2 µm to several micrometers in length, and the majority of bacteria are about 1.0 µm in length or diameter. The density of a bacterial cell is only slightly greater than that of water. Stable suspensions of bacteria in dilute electrolytes (e.g., nutrient media) result, in part, from a mutual electrostatic repulsion between like charges on the bacterial surfaces. As revealed by electrophoretic measurements (Fig. 1), bacteria possess a net negative surface charge at pH values found in most natural habitats. A charge reversal at low pH values is indicative of the presence of some charged basic (amino) groups, which are revealed when dissociation of acidic (carboxyl, phosphate) groups is suppressed at the low pH values (Plummer and James, 1961). The positively charged groups appear to be evenly distributed over the surface of Flexibacter aurantiacus CW7 (Marshall and Cruickshank, 1973). Bacteria also exhibit variations in overall surface free energy of the cells, with some bacteria possessing relatively hydrophilic surfaces and others relatively hydrophobic surfaces (Mudd and Mudd, 1924; Magnusson et al., 1977; Dahlbäck et al., 1981). The distribution of hydrophobic sites on bacterial cells is not necessarily uniform and may result in a preferred orientation of certain bacteria at interfaces (Marshall and Cruickshank, 1973).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absolom, D. R., van Oss, C. J., Genco, R. J., Francis, D. W., Zingg, W., and Neumann, A. W., 1980, Surface thermodynamics of normal and pathological granulocytes, Cell Biophys. 2:113–126.

    PubMed  CAS  Google Scholar 

  • Absolom, D. R., Lamberti, F. V., Policova, Z., Zingg, W., van Oss, C. J., and Neumann, A. W., 1983, Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol. 46:90–97.

    PubMed  CAS  Google Scholar 

  • Adler, J., 1969, Chemoreceptors in bacteria, Science 166:1588–1597.

    Article  PubMed  CAS  Google Scholar 

  • Applebaum, B., Golub, E., Holt, S. C, and Rosan, B., 1979, In vitro studies of dental plaque formation: Adsorption of oral streptococci to hydroxyapatite, Infect. Immun. 25:717–728.

    Google Scholar 

  • Baier, R. E., 1973, Influence of the initial surface condition of materials on bioadhesion, in: Proceedings, 3rd International Congress on Marine Corrosion Fouling (R. F. Acker, B. F. Brown, J. R. DePalma, and W. P. Iverson, eds.), Northwestern University Press, Evanston, Ill., pp. 633–639.

    Google Scholar 

  • Baier, R. E., 1980, Substrate influence on adhesion of microorganisms and their resultant new surface properties, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley-Interscience, New York, pp. 59–104.

    Google Scholar 

  • Bangham, A. D., and Pethica, B. A., 1960, The adhesiveness of cells and the nature of chemical groups at their surfaces, Proc. R. Phys. Soc. Edinburgh 28:43–52.

    Google Scholar 

  • Belas, M. R., and Colwell, R. R., 1982, Adsorption kinetics of laterally and polarly flagellated Vibrio, J. Bacteriol. 151:1568–1580.

    CAS  Google Scholar 

  • Brown, C. M., Ellwood, D. C, and Hunter, J. R., 1977, Growth of bacteria at surfaces: Influence of nutrient limitation, FEMS Microbiol. Lett. 1:163–166.

    Article  CAS  Google Scholar 

  • Bryers, J. D., and Characklis, W. G., 1981, Kinetics of initial biofilm formation within a turbulent flow system, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), Hemisphere, Washington, D.C., pp. 313–333.

    Google Scholar 

  • Carson, J., and Allsopp, D., 1980, The enumeration of marine periphytic bacteria from a temporal sampling series, in: Biodeterioration, Proceedings of the 4th International Biodeterioration Symposium, Berlin (T. A. Oxley, G. Becker, and D. Allsopp, eds.), Pitman, London, pp. 193–198.

    Google Scholar 

  • Celesk, R. A., and London, J., 1980, Attachment of oral Cytophaga species to hydroxy apatite-containing surfaces, Infect. Immun. 29:768–777.

    PubMed  CAS  Google Scholar 

  • Characklis, W. G., 1981a, Bioengineering report: Fouling biofilm development: A process analysis, Biotech. Bioeng. 23:1923–1960.

    Article  CAS  Google Scholar 

  • Characklis, W. G., 1981b, Microbial fouling: A process analysis, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), Hemisphere, Washington, D.C., pp. 251–291.

    Google Scholar 

  • Clark, W. B., Bammann, L. L., and Gibbons, R. J., 1978, Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces, Infect. Immun. 19:846–853.

    PubMed  CAS  Google Scholar 

  • Corpe, W. A., 1970a, Attachment of marine bacteria to solid surfaces, in: Adhesion in Biological Systems (R. S. Manly, ed.), Academic Press, New York, pp. 73–87.

    Google Scholar 

  • Corpe, W. A., 1970b, An acid polysaccharide produced by a primary film-forming marine bacterium, Dev. Ind. Microbiol. 11:402–412.

    Google Scholar 

  • Corpe, W. A., 1980, Microbial surface components involved in the adsorption of microorganisms onto surfaces, in: Adsorption of Microorganisms to Surfaces (G. Bitton and K. C. Marshall, eds.), Wiley-Interscience, New York, pp. 105–144.

    Google Scholar 

  • Costerton, J. W., Irvin, R. T., and Cheng, K.-J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35:299–324.

    Article  PubMed  CAS  Google Scholar 

  • Cox, P. J., and Twigg, G. I., 1974, Leptospiral motility, Nature (London) 250:260–261.

    Article  CAS  Google Scholar 

  • Crisp, D. J., 1973, Mechanisms of adhesion of fouling organisms, in: Proceedings, 3rd International Congress on Marine Corrosion Fouling (R. F. Acker, B. F. Brown, J. R. DePalma, and W. P. Iverson, eds.), Northwestern University Press, Evanston, Ill., pp. 691–709.

    Google Scholar 

  • Dahlbäck, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., 1981, The hydrophobicity of bacteria—An important factor in their initial adhesion at the air-water interface, Arch. Microbiol. 128:267–270.

    Article  PubMed  Google Scholar 

  • Danielsson, A., Norkrans, B., and Bjornsson, A., 1977, On bacterial adhesion—The effect of certain enzymes on adhered cells of a marine Pseudomonas sp., Bot. Mar. 20:13–17.

    Article  CAS  Google Scholar 

  • Dawson, M. P., Humphrey, B. A., and Marshall, K. C, 1981, Adhesion, a tactic in the survival strategy of a marine vibrio during starvation, Curr. Microbiol. 6:195–198.

    Article  Google Scholar 

  • Derjaguin, B. V., and Landau, L., 1941, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. URSS 14:633–662.

    Google Scholar 

  • Dexter, S. C, 1979, Influence of substratum critical surface tension on bacterial adhesion—In situ studies, J. Colloid Interface Sci. 70:346–354.

    Article  CAS  Google Scholar 

  • Dexter, S. C., Sullivan, J. D., Jr., Williams, J., III, and Watson, S. W., 1975, Influence of substrate wettability on the attachment of marine bacteria to various surfaces, Appl. Microbiol. 30:298–308.

    PubMed  CAS  Google Scholar 

  • Doetsch, R. N., and Seymour, F. W. K., 1970, Negative chemotaxis in bacteria, Life Sci. 9:1029–1037.

    Article  CAS  Google Scholar 

  • Doyle, R. J., Nesbitt, W. E., and Taylor, K. G., 1982, On the mechanism of adherence of Streptococcus sanguis to hydroxylapatite, FEMS Microbiol. Lett. 15:1–5.

    Article  CAS  Google Scholar 

  • Everett, D. H., and Radke, C. J., 1975, Thermodynamics of adsorption and interparticle forces, in: Adsorption at Interfaces (K. L. Mittal, ed.), American Chemical Society, Washington, D.C., pp. 1–15.

    Chapter  Google Scholar 

  • Fisher, L. R., Israelachvili, J. N., Parker, N. S., and Sharpies, F., 1980, Adhesion measurement, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M., Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 515–517.

    Google Scholar 

  • Fletcher, M., 1976, The effects of proteins on bacterial attachment to polystyrene, J. Gen. Microbiol. 94:400–404.

    PubMed  CAS  Google Scholar 

  • Fletcher, M., 1977, The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene, Can. J. Microbiol. 23:1–6.

    Article  Google Scholar 

  • Fletcher, M, 1980a, The question of passive versus active attachment mechanisms in non-specific bacterial adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 197–210.

    Google Scholar 

  • Fletcher, M., 1980b, Adherence of marine microorganisms to smooth surfaces, in: Bacterial Adherence (E. H. Beachey, ed.), Chapman & Hall, London, pp. 345–374.

    Google Scholar 

  • Fletcher, M., 1983, The effects of methanol, ethanol, propanol and butanol on bacterial attachment to surfaces, J. Gen. Microbiol. 129:633–641.

    CAS  Google Scholar 

  • Fletcher, M., and Floodgate, G. D., 1973, An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces, J. Gen. Microbiol. 74:325–334.

    CAS  Google Scholar 

  • Fletcher, M., and Loeb, G. I., 1976, The influence of substratum surface properties on the attachment of a marine bacterium, in: Colloid and Interface Science, Volume III (M. Kerker, ed.), Academic Press, New York, pp. 459–469.

    Google Scholar 

  • Fletcher, M., and Loeb, G. I., 1979, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37:67–72.

    PubMed  CAS  Google Scholar 

  • Fletcher, M., and Marshall, K. C, 1982a, Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment, Appl. Environ. Microbiol. 44:184–192.

    PubMed  CAS  Google Scholar 

  • Fletcher, M., and Marshall, K. C, 1982b, Are solid surfaces of ecological significance to aquatic bacteria?, in: Advances in Microbial Ecology, Volume 6 (K. C. Marshall, ed.), Plenum Press, New York, pp. 199–236.

    Chapter  Google Scholar 

  • Fletcher, M., and Pringle, J. H., 1984, The effect of surface free energy and medium surface tension on bacterial attachment to solid surfaces,J. Colloid Interface Sci., in press.

    Google Scholar 

  • Gaudy, E., and Wolfe, R. S., 1962, Composition of an extracellular polysaccharide produced by Sphaerotilus natans, Appl. Microbiol. 10:200–205.

    CAS  Google Scholar 

  • Gerson, D. F., 1980, Cell surface energy, contact angles and phase partition. I. Lymphocyte cell lines in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:269–280.

    Article  PubMed  CAS  Google Scholar 

  • Gerson, D. F., and Akit, J., 1980, Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures, Biochim. Biophys. Acta 602:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Gerson, D. F., and Scheer, D., 1980, Cell surface energy, contact angles and phase partition. III. Adhesion of bacterial cells to hydrophobic surfaces, Biochim. Biophys. Acta 602:506–510.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, R. J., Moreno, E. C, and Spinell, D. M., 1976, Model delineating the effects of a salivary pellicle on the adsorption of Streptococcus miteor onto hydroxy apatite, Infect. Immun. 14:1109–1112.

    PubMed  CAS  Google Scholar 

  • Hall, D. G., 1972, Thermodynamic treatment of some factors affecting the interaction between colloidal particles, J. Chem. Soc. Faraday Trans. 2 68:1269–1282.

    Google Scholar 

  • Hamada, S., 1977, New glucan synthesis as a prerequisite for adherence of Streptococcus mutans to smooth glass surfaces, Microbios Lett. 5:141–146.

    Google Scholar 

  • Harris, R. H., and Mitchell, R., 1973, The role of polymers in microbial aggregation, Annu. Rev. Microbiol. 27:27–50.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, P., and Pankratz, S. H., 1970, Studies of bacterial populations in natural environments by use of submerged electron microscope grids, Z. Allg. Mikrobiol. 10:589–605.

    Article  CAS  Google Scholar 

  • Humphrey, B. A., Dickson, M. R., and Marshall, K. C, 1979, Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces, Arch. Microbiol. 120:231–238.

    Article  CAS  Google Scholar 

  • Jones, G. W., Richardson, L. A., and Vanden Bosch, J. L., 1980, Phases in the interaction between bacteria and animal cells, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 211–219.

    Google Scholar 

  • Jones, G. W., Richardson, L. A., and Uhlman, D., 1981, The invasion of HeLa cells by Salmonella typhimurium: Reversible and irreversible bacterial attachment and the role of bacterial motility, J. Gen. Microbiol. 127:351–360.

    PubMed  CAS  Google Scholar 

  • Jones, G. W., Rabert, D. K., Svinarich, D. M., and Whitfield, H. J., 1982, Association of adhesive, invasive and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids, Infect. Immun. 38:476–486.

    PubMed  CAS  Google Scholar 

  • Kefford, B., Kjelleberg, S., and Marshall, K. C, 1982, Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface, Arch. Microbiol. 133:257–260.

    Article  CAS  Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C, 1983, Initial phases of starvation and activity of bacteria at surfaces, Appl. Environ. Microbiol. 46:978–984.

    PubMed  CAS  Google Scholar 

  • LaMer, V. K., and Healy, T. W., 1963, Adsorption flocculation of macromolecules at the solid-liquid surface, Rev. Pure Appl. Chem. 13:112–133.

    CAS  Google Scholar 

  • Leech, R., and Hefford, R. J. W., 1980, The observation of bacterial deposition from a flowing suspension, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 544–545.

    Google Scholar 

  • Lemlich, R., 1972, Adsubble processes: Foam fractionation and bubble fractionation, J. Geophys. Res. 77:5204–5210.

    Article  CAS  Google Scholar 

  • Lister, D. H., 1981, Corrosion products in power generating systems, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), Hemisphere, Washington, D.C., pp. 135–200.

    Google Scholar 

  • Loeb, G. I., 1977, The Settlement of Fouling Organisms on Hydrophobic Surfaces, Naval Research Laboratory Memorandum Report 3665, Washington, D.C.

    Google Scholar 

  • Lupton, F. S., 1982, The adhesion of bacteria to heterocysts of Anabaena: An example of specific microbial attachment of ecological significance, Ph.D. thesis, University of New South Wales, Kensington, Australia.

    Google Scholar 

  • Lupton, F. S., and Marshall, K. C, 1981, Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance, Appl. Environ. Microbiol. 42:1085–1092.

    PubMed  CAS  Google Scholar 

  • Magnusson, K. E., Stendahl, O., Tagesson, C, Edebo, L., and Johansson, G., 1977, The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interactions as studied in aqueous polymer two-phase system, Acta Pathol. Microbiol. Scand. Sect. B 85:212–218.

    CAS  Google Scholar 

  • Maroudas, N. G., 1975, Polymer exclusion, cell adhesion and membrane fusion, Nature (London) 254:695–696.

    Article  CAS  Google Scholar 

  • Marshall, K. C., 1967, Electrophoretic properties of fast- and slow-growing species of Rhizobium, Aust. J. Biol. Sci. 20:429–438.

    CAS  Google Scholar 

  • Marshall, K. C., 1973, Mechanism of adhesion of marine bacteria to surfaces, in: Proceedings, 3rd International Congress on Marine Corrosion Fouling (R. F. Acker, B. F. Brown, J. R. DePalma, and W. P. Iverson, eds.), Northwestern University Press, Evanston, Ill., pp. 625–632.

    Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Marshall, K. C, 1980, Microorganisms and interfaces, BioScience 30:246–249.

    Article  Google Scholar 

  • Marshall, K. C, 1981, Bacterial behavior at solid surfaces—A prelude to microbial fouling, in: Fouling of Heat Transfer Equipment (E. F. C. Somerscales and J. G. Knudsen, eds.), Hemisphere, Washington, D.C, pp. 305–312.

    Google Scholar 

  • Marshall, K. C, and Cruickshank, R. H., 1973, Cell surface hydrophobicity and the orientation of certain bacteria at interfaces, Arch. Mikrobiol. 91:29–40.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, K. C, Stout, R., and Mitchell, R., 1971a, Mechanism of the initial events in the sorption of marine bacteria to surfaces, J. Gen. Microbiol. 68:337–348.

    CAS  Google Scholar 

  • Marshall, K. C, Stout, R., and Mitchell, R., 1971b, Selective sorption of bacteria from seawater, Can. J. Microbiol. 17:1413–1416.

    Article  PubMed  CAS  Google Scholar 

  • Matthysse, A. G., Wyman, P. M., and Holmes, K. V., 1978, Plasmid-dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells, Infect. Immun. 22:516–522.

    PubMed  CAS  Google Scholar 

  • Meadows, P. S., 1971, The attachment of bacteria to solid surfaces, Arch. Mikrobiol. 75:374–381.

    Article  PubMed  CAS  Google Scholar 

  • Minato, H., and Suto, T., 1976, Technique of fractionation of bacteria in rumen microbial ecosystem. I. Attachment of rumen bacteria to starch granules and elution of bacteria attached to them, J. Gen. Appl. Microbiol. 22:259–276.

    Article  Google Scholar 

  • Minato, H., and Suto, T., 1979, Technique for fractionation of bacteria in rumen microbial ecosystem. III. Attachment of bacteria isolated from bovine rumen to starch granules in vitro and elution of bacteria attached therefrom, J. Gen. Appl. Microbiol. 25:71–93.

    Article  Google Scholar 

  • Morris, J. A., Thorns, C. J., Scott, A. C, and Sojka, W. J., 1982, Adhesive properties associated with the Vir plasmid: A transmissible pathogenic characteristic associated with strains of invasive Escherichia coli, J. Gen. Microbiol. 128:2097–2103.

    CAS  Google Scholar 

  • Mudd, S., and Mudd, E. B. H., 1924, Certain interfacial tension relations and the behavior of bacteria in films, J. Exp. Med. 40:647–660.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, A. W., Good, R. J., Hope, C. J., and Sejpal, M., 1974, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles, J. Colloid Interface Sci. 49:291–304.

    Article  CAS  Google Scholar 

  • Neumann, A. W., Absolom, D. R., van Oss, C. J., and Zingg, W., 1979, Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces, Cell Biophys. 1:79–92.

    PubMed  CAS  Google Scholar 

  • Neumann, A. W., Hum, O. S., Francis, D. W., Zingg, W., and van Oss, C. J., 1980, Kinetic and thermodynamic aspects of plaetelet adhesion from suspension to various substrates, J. Biomed. Matter. Res. 14:499–509.

    Article  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1978, Possible strategy for the survival of marine bacteria under starvation conditions, Mar. Biol. 48:289–295.

    Article  Google Scholar 

  • O’Brien, R. W., 1981, The gliding motion of a bacterium: Flexibacter strain BH3, J. Aust. Math. Soc. Ser. B 23:2–16.

    Article  Google Scholar 

  • Ørstavik, D., 1977, Sorption of streptococci to glass: Effects of macromolecular solutes, Acta Pathol. Microbiol. Scand. 85:47–53.

    Google Scholar 

  • Pethica, B. A., 1980, Microbial and cell adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 19–45.

    Google Scholar 

  • Plummer, D. T., and James, A. M., 1961, Some physical investigations of the behaviour of bacterial surfaces. III. The variation of the electrophoretic mobility and capsule size of Aerobacter aero genes with age, Biochim. Biophys. Acta 53:453–460.

    Article  PubMed  CAS  Google Scholar 

  • Pourdjabber, F., and Russell, C, 1979, Factors affecting adhesion of bacteria to a tooth in vitro, Microbios 26:73–84.

    Google Scholar 

  • Pringle, J. H., and Fletcher, M., 1983, Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces, Appl. Environ. Microbiol. 45:811–817.

    PubMed  CAS  Google Scholar 

  • Pringle, J. H., Fletcher, M., and Ellwood, D. C, 1983, Selection of attachment mutants during the continuous culture of Pseudomonas fluorescens and relationship between attachment ability and surface composition, J. Gen. Microbiol. 129:2557–2569.

    CAS  Google Scholar 

  • Roper, M. M., and Marshall, K. C, 1974, Modification of the interaction between Escherichia coli and bacterio-phage in saline sediment, Microb. Ecol. 1:1–13.

    Article  Google Scholar 

  • Rosenberg, M., 1981, Bacterial adherence to polystyrene: A replica method of screening for bacterial hydrophobicity, Appl. Environ. Microbiol. 42:375–377.

    PubMed  CAS  Google Scholar 

  • Rosenberg, M., Gutnik, D., and Rosenberg, E., 1980, Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett. 9:29–33.

    Article  CAS  Google Scholar 

  • Rosenberg, M., Bayer, E. A., Delarea, J., and Rosenberg, E., 1982, Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane, Appl. Environ. Microbiol. 44:929–937.

    PubMed  CAS  Google Scholar 

  • Rubentschick, L., Roisin, M. B., and Bieljansky, F. M., 1936, Adsorption of bacteria in salt lakes, J. Bacteriol. 32:11–31.

    Google Scholar 

  • Seymour, F. W. K., and Doetsch, R. N., 1973, Chemotactic responses by motile bacteria, J. Gen. Microbiol. 78:287–296.

    PubMed  CAS  Google Scholar 

  • Shaw, D. J., 1966, Introduction to Colloid and Surface Chemistry, Butterworths, London.

    Google Scholar 

  • Sjoblad, R. D., and Doetsch, R. N., 1982, Adsorption of polarly flagellated bacteria to surfaces, Curr. Microbiol. 7:191–194.

    Article  Google Scholar 

  • Sutherland, I. W., 1980, Polysaccharides in the adhesion of marine and freshwater bacteria, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 329–338.

    Google Scholar 

  • Tadros, T. F., 1980, Particle-surface adhesion, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 93–116.

    Google Scholar 

  • Takakuwa, S., Fujimori, T., and Iwasaki, H., 1979, Some properties of cell-sulphur adhesion in Thiobacillus thiooxidans, J. Gen. Appl. Microbiol. 25:21–29.

    Article  CAS  Google Scholar 

  • Tosteson, T. R., and Corpe, W. A., 1975, Enhancement of adhesion of the marine Chlorella vulgaris to glass, Can. J. Microbiol. 21:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  • Vaituzis, A., and Doetsch, R. N., 1969, Motility tracks: Technique for quantitative study of bacterial movement, Appl. Microbiol. 17:584–588.

    PubMed  CAS  Google Scholar 

  • van Houte, J., and Upeslacis, V. N., 1976, Studies on the mechanism of sucrose-associated colonization of Streptococcus mutans on teeth of conventional rats, J. Dent. Res. 55:216–222.

    Article  PubMed  Google Scholar 

  • van Oss, C. J., Gillman, C. F., and Neumann, A. W., 1975, Phagocytic Engulfment and Cell Adhesiveness as Cellular Surface Phenomena, Dekker, New York.

    Google Scholar 

  • Verwey, E. J. W., and Overbeek, J. T. G., 1948, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.

    Google Scholar 

  • Vincent, B., 1974, The effect of adsorbed polymers on dispersion stability, Adv. Colloid Interface Sci. 4:193–277.

    Article  CAS  Google Scholar 

  • Wardell, J. N., Brown, C.M., and Ellwood, D. C, 1980, A continuous culture study of the attachment of bacteria to surfaces, in: Microbial Adhesion to Surfaces (R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, eds.), Horwood, Chichester, pp. 221–230.

    Google Scholar 

  • Weiss, L., 1971, Biophysical aspects of initial cell interactions with solid surfaces, Fed. Proc. Fed. Am. Soc. Exp. Biol. 30:1649–1657.

    CAS  Google Scholar 

  • Weiss, L., and Harlos, J. P., 1972, Short term interaction between cell surfaces, Prog. Surf. Sci. 1:355–405.

    Article  CAS  Google Scholar 

  • Whatley, M. H., Margot, J. B., Schell, J., Lippincott, B. B., and Lippincott, J. A., 1978, Plasmid and chromosomal determination of Agrobacterium adherence specificity, J. Gen. Microbiol. 107:395–398.

    CAS  Google Scholar 

  • Wheeler, T. T., Clark, W. B., and Birdsell, D. C, 1979, Adherence of Actinomyces viscosus T14V and T14AV to hydroxyapatite surfaces in vitro and human teeth in vivo, Infect. Immun. 25:1066–1074.

    PubMed  CAS  Google Scholar 

  • Wu, S., 1980, Surface tension of solids: Generalization and reinterpretation of critical surface tension, in: Adhesion and Adsorption of Polymers (L.-H. Lee, ed.), Plenum Press, New York, pp. 53–65.

    Google Scholar 

  • Young, L. Y., and Mitchell, R., 1973a, The role of chemotactic responses in primary microbial film formation, in: Proceedings, 3rd International Congress on Marine Corrosion Fouling (R. F. Acker, B. F. Brown, J. R. DePalma, and W. P. Iverson, eds.), Northwestern University Press, Evanston, Ill., pp. 617–624.

    Google Scholar 

  • Young, L. Y., and Mitchell, R., 1973b, Negative chemotaxis of marine bacteria to toxic chemicals, Appl. Microbiol. 25:972–975.

    PubMed  CAS  Google Scholar 

  • Zisman, W. A., 1964, Relation of equilibrium contact angle to liquid and solid constitution, in: Contact Angle, Wettability and Adhesion (R. F. Gould, ed.), American Chemical Society, Washington, D.C., pp. 1–51.

    Google Scholar 

  • ZoBell, C. E., 1943, The effect of solid surfaces upon bacterial activity, J. Bacteriol. 46:39–56.

    PubMed  CAS  Google Scholar 

  • Zvyagintsev, D. G., Pertsovskaya, A. F., Yakhnin, E. D., and Averbach, E. I., 1971, Adhesion value of microorganism cells to solid surfaces, Microbiology (Engl. Transl.) 40:889–893.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Marshall, K.C. (1985). Mechanisms of Bacterial Adhesion at Solid-Water Interfaces. In: Savage, D.C., Fletcher, M. (eds) Bacterial Adhesion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6514-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6514-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6516-1

  • Online ISBN: 978-1-4615-6514-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics