Skip to main content

Sonic Anemometers

  • Chapter

Abstract

The sonic anemometer measures wind velocity components from arrival times (or phase) of acoustic signals transmitted across a fixed path. Since there are no moving parts to come into dynamic equilibrium with the flow, it responds rapidly to velocity fluctuations. Its frequency response is limited only through the attenuation in spatial response imposed by line averaging along the path- It responds linearly to wind velocity and, with proper design, is relatively free of contamination from other velocity components or temperature. As an absolute instrument, its calibration is established by its design parameters Because of these advantages, the sonic anemometer has become a prime research instrument for measuring turbulent velocity fluctuations in the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BANKE, E.G., S.D. SMITH and R.J. ANDERSON. 1976. Recent measurements of wind stress on Arctic Sea Ice. Journal of the Fisheries Research Board of Canada, 33: 2307–2317.

    Article  Google Scholar 

  • BOVSHEVEROV, V.M. and V.P. VORONOV. 1960. Acoustic anemometer. Academy of Sciences of the USSR Bulletin, Geophysics Series, 6: 882–885.

    Google Scholar 

  • BOVSHEVEROV, V.M., B.M. KOPROV and M.I. MORDUKHOVICH. 1973. A three-component acoustic anemometer. Atmospheric and Oceanic Physics, 9: 240–241.

    Google Scholar 

  • BROCKS, K. and L. HASSE. 1969. Eine neigungsstabilisierte Boje zur Messung der turbulenten Vertikalflüsse über dem Meer. Archiv fur Merteorologie, Geophysik und Bioklimatologie, Series A, 18: 331–344.

    Article  Google Scholar 

  • DEACON, E.L. 1968. The leveling error in Reynolds stress measurement. Bulletin of the American Meteorological Society, 49: 836.

    Google Scholar 

  • FRIEHE, C.A. 1976. Effects of sound speed fluctuations on sonic anemometer measurements. Journal of Applied Meteorology, 15: 607–610.

    Article  Google Scholar 

  • FRIEHE, C.A., C.H. GIBSON, F.H. CHAMPAGNE and J.C LARUE. 1975. Turbulence measurement in the marine boundary layer. Atmospheric Technology, 7 (National Center for Atmospheric Research, Boulder, Colorado): 15–23.

    Google Scholar 

  • GURVICH, A. S. 1960. Frequency spectra and functions of distribution of probabilities of vertical velocity components. Izvestia Geophysical Series 7: 1042–1055 (AGU English translation: 695–703).

    Google Scholar 

  • HORST, T.W. 1973. Spectral transfer functions for a three-component sonic anemometer. Journal of Applied Meteorology, 12: 1072–1075.

    Article  Google Scholar 

  • KAIMAL, J.C. 1969. Measurement of momentum and heat flux variations in the surface boundary layer. Radio Science, 4: 1147–1153.

    Article  Google Scholar 

  • KAIMAL, J.C. and J.A. BUSINGER. 1963. A continuous wave sonic anemometer-thermometer. Journal of Applied Meteorology, 2: 156–164.

    Article  Google Scholar 

  • KAIMAL, J.C and D.A. HAUGEN. 1969. Some errors in the measurement of Reynolds stress. Journal of Applied Meteorology, 8: 460–462.

    Article  Google Scholar 

  • KAIMAL, J.C. and D.A. HAUGEN. 1971. Comments on “Minimizing the levelling error in Reynolds stress measurement by filtering”. Journal of Applied Meteorology, 10: 337–339.

    Article  Google Scholar 

  • KAIMAL, J.C., J.T. NEWMAN, A. BISBERG and K. COLE. 1974. An improved three-component sonic anemometer for investigation of atmospheric turbulence. In Flow — Its Measurement and Control in Science and Industry, 1 (Instrument Society of America): 349–359.

    Google Scholar 

  • KAIMAL, J.C., J.C. WYNGAARD and D.A. HAUGEN. 1968. Deriving power spectra from a three-component sonic anemometer. Journal of Applied Meteorology, 7: 827–837.

    Article  Google Scholar 

  • KAIMAL, J.C., J.C. WYNGAARD, Y. IZUMI and O.R. COTE. 1972. Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98: 563–589.

    Article  Google Scholar 

  • KOPROV, B.M. and D. Y. SOKOLOV 1973. Spatial correlation functions of velocity and temperature components in the surface layer of the atmosphere. Atmospheric and Oceanic Physics, 9: 95–98.

    Google Scholar 

  • MITSUTA, Y. 1966. Sonic anemometer thermometer for general use. Journal of the Meteorological Society of Japan, 44: 12–24.

    Google Scholar 

  • MITSUTA, Y. 1974. Sonic anemometer-thermometer for atmospheric turbulence measurements. In Flow — Its Measurement and Control in Science and Industry, 1 (Instrument Society of America): 341–347.

    Google Scholar 

  • MITSUTA, Y. and T. FUJITANI. 1974. Direct measurement of turbulent fluxes on a cruising ship. Boundary-Layer Meteorology, 6: 203–217.

    Article  Google Scholar 

  • MIYAKE, M., M. DONELAN, G. MCBEAN, C. PAULSON, F. BADGLEY and E. LEAVITT. 1970. Comparison of turbulent fluxes over water determined by profile and eddy correlation techniques. Quarterly Journal of the Royal Meteorological Society, 96: 132–137.

    Article  Google Scholar 

  • POND, S., G.T. PHELPS, J.E. PAQUIN, G. MCBEAN and R.W. STEWART. 1971. Measurement of turbulent fluxes of momentum, moisture and sensible heat over the ocean. Journal of Atmospheric Sciences, 28: 901–917.

    Article  Google Scholar 

  • RAYMENT, R. and C.J. READINGS. 1971. The importance of instrument tilt on measurements of atmospheric turbulence. Quarterly Journal of the Royal Meteorological Society, 97: 124–130.

    Article  Google Scholar 

  • SMITH, S.D. 1974. Eddy flux measurements over Lake Ontario. Boundary-Layer Meteorology, 6: 235–255.

    Article  Google Scholar 

  • SUOMI, V.E. 1957. Sonic anemometer. In Exploring the Atmosphere’s First Mile, Pergamon, New York, 1: 256–266.

    Google Scholar 

  • WIERINGA, J. 1972. Tilt errors and precipitation effects in trivane measurements of turbulent fluxes over open water. Boundary-Layer Meteorology, 2: 406–426.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Kaimal, J.C. (1980). Sonic Anemometers. In: Dobson, F., Hasse, L., Davis, R. (eds) Air-Sea Interaction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9182-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9182-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9184-9

  • Online ISBN: 978-1-4615-9182-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics