Skip to main content

Effects of Gas- and Liquid-Phase Environments on the Sintering Behavior of Platinum Catalysts

  • Chapter
Sintering and Catalysis

Part of the book series: Materials Science Research ((MSR,volume 10))

Abstract

Platinum has been used extensively as a catalyst in the petroleum industry for hydrocarbon cracking. More recently, Pt has been considered for an electrocatalyst in fuel cells and for catalytic mufflers in the exhaust systems of automobiles. The performance of Pt as a catalyst in these heterogeneous catalysed systems is dependent upon the Pt activity and the real Pt surface area accessible to the reactant (in the absence of catalyst deactivation by poisoning and mass transfer limitations). The high temperature application of supported Pt (Pt/Al2O3) as a heterogeneous catalyst in a gasphase environment causes sintering and loss of Pt surface area (1–7). Unsupported Pt black sinters rapidly in a gas-phase environment (8, 9) but at a much lower temperature (< 200°C) than supported Pt. In contrast, unsupported pt black (10–13) and Pt supported on carbon (14, 15) sinter in liquid-phase environments in the same temperature range (100–200°C). Since a loss of Pt surface area due to sintering results in a decrease of the total catalyst activity (constant pt specific activity assumed) there is significant profit in maintaining high surface area Pt catalysts in diverse operational environments. Yet, despite the numerous publications presenting experimental data for the sintering of supported and unsupported metal catalysts, the mechanisms responsible for this phenomenon remain a subject of controversy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gruber, Anal. Chem. 34, 1828 (1962).

    Article  CAS  Google Scholar 

  2. H. Gruber, J. Phys. Chem. 66, 48, (1962).

    Article  CAS  Google Scholar 

  3. H. Maat & L. Moscou, Proc. 3rd Intl. Cong, on Catal. (W. Sachtier, G. Schuit & P. Zwietering, Eds.) p. 1277, North-Holland, 1965.

    Google Scholar 

  4. R. Herrmann, S. Adler, M. Goldstein & R. DeBaun, J. Phys. Chem. 65, 2189 (1961).

    Article  CAS  Google Scholar 

  5. T. Hughes, R. Huston & R. Sieg, Ind. Eng. Chem. Proc. Res. Dev. 1, 96 (1962).

    Article  CAS  Google Scholar 

  6. F. Huang & C. Li, Scripta Met. 7, 1239 (1973).

    Article  CAS  Google Scholar 

  7. P. Wynblatt & N. Gjostein, Scripta Met. 7, 969 (1973).

    Article  CAS  Google Scholar 

  8. D. McKee, J. Phys. Chem. 67, 841 (1963).

    Article  CAS  Google Scholar 

  9. S. Khassan, S. Fedorkina, G. Emel’yanova & V. Lebedev, Zh. Fiz. Khim. SSSR 42, 2507 (1968).

    CAS  Google Scholar 

  10. K. Kinoshita, K. Routsis, J. Bett & C. Brooks, Electrochim. Acta 18, 953 (1973).

    Article  CAS  Google Scholar 

  11. P. Stonehart & P. Zucks, Electrochim. Acta 17, 2333 (1972).

    Article  CAS  Google Scholar 

  12. R. Thacker, Nature 212, 182 (1966).

    Article  CAS  Google Scholar 

  13. P. Malachesky, C. Leung & H. Feng, U.S. Nat. Tech. Inform. Serv., AD Rep. 1972, No. 757714.

    Google Scholar 

  14. J. Bett, K. Kinoshita & P. Stonehart, to be published.

    Google Scholar 

  15. J. Connolly, R. Flannery & B. Meyers, J. Electrochem. Soc. 114, 241 (1967).

    Article  CAS  Google Scholar 

  16. G. Kuczynski, Powder Metallurgy (W. Leszynski, Ed.) p. 11, Interscience, N.Y., 1961.

    Google Scholar 

  17. G. Kuczynski, Adv. Colloid Interface Sci. 3, 275 (1972).

    Article  CAS  Google Scholar 

  18. E. Ruckenstein & B. Pulvermacher, J. Catal. 29, 224 (1973).

    Article  CAS  Google Scholar 

  19. E. Ruckenstein & B. Pulvermacher, AIChE J. 19, 356 (1973).

    Article  CAS  Google Scholar 

  20. W. Phillips, E. Desloge & J. Skofronick, J. Appl. Phys. 39, 3210 (1968).

    Article  CAS  Google Scholar 

  21. M. Von Smoluchowski, Z. Phys. Chem. 92, 129 (1918).

    Google Scholar 

  22. B. Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967).

    Article  CAS  Google Scholar 

  23. W. Dunning, Particle Growth in Suspensions (A. Smith, Ed.) p. 1, Academic Press, London, 1973.

    Google Scholar 

  24. P. Wynblatt & N. Gjostein, Prog. Solid State Chem. 9 (1970).

    Google Scholar 

  25. P. Rebinder & E. Wenstrom, Acta Physicochim. 19, 36 (1944).

    CAS  Google Scholar 

  26. F. Bowden & J. Young, Research 3, 235 (1950).

    CAS  Google Scholar 

  27. L. Stolyarenko & A. Vasev, Elektrokhimiya 7, 1380 (1971).

    CAS  Google Scholar 

  28. D. Fornwalt & K. Kinoshita, Micron 4, 99 (1973).

    Google Scholar 

  29. G. Geach, Prog. Metal Phys. 4, 174 (1965).

    Article  Google Scholar 

  30. A. Shaler, Trans. Amer. Inst. Min. Engrs. 185, 796 (1949).

    Google Scholar 

  31. E. Barrett, L. Joyner & P. Halenda, J. A.C.S. 73, 373 (1951).

    Article  CAS  Google Scholar 

  32. P. Flynn & S. Wanke, J. Catal. 34, 390, 400 (1974).

    Article  CAS  Google Scholar 

  33. J. Bett, K. Kinoshita & P. Stonehart, J. Catal. 35, 307 (1974).

    Article  CAS  Google Scholar 

  34. J. Bett, K. Kinoshita, K. Routsis & P. Stonehart, J. Catal. 29, 160 (1973).

    Article  CAS  Google Scholar 

  35. J. Geus, Chemisorption and Reactions on Metallic Films (J. Anderson, Ed.) Academic Press, New. York, Vol. 1, p. 129, 1971.

    Google Scholar 

  36. W. Neikam & M. Vannice, J. Catal. 27, 207 (1972).

    Article  CAS  Google Scholar 

  37. J. Benson, H, Kohn & M. Boudart, J. Catal. 5, 307 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Kinoshita, K., Bett, J.A.S., Stonehart, P. (1975). Effects of Gas- and Liquid-Phase Environments on the Sintering Behavior of Platinum Catalysts. In: Kuczynski, G.C. (eds) Sintering and Catalysis. Materials Science Research, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0934-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0934-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0936-9

  • Online ISBN: 978-1-4684-0934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics