Skip to main content

Strained Layer Lasers and Avalanche Photodetectors

  • Chapter
Condensed Systems of Low Dimensionality

Part of the book series: NATO ASI Series ((NSSB,volume 253))

Abstract

The ability to grow high quality epitaxial layers of group III–V and group IV semiconductors in a state of permanent strain has two important implications for electronic and optoelectronic devices. First, it relaxes the constraints imposed by the requirement of lattice-matching. Thus, for example, by an appropriate choice of well width and composition InxGal-xAs/GaAs quantum well lasers can be made to operate at a convenient wavelength for the selective pumping of erbium doped fibre lasers and amplifiers. Also InxGal-xAs on GaAs can provide a high mobility channel for n-type FETs or the base for n-p-n bipolar transistors, improving their emitter injection efficiency. Finally, if such devices can be grown on silicon substrates, further considerable advantages would arise for the integration of optoelectronic circuits. For these applications strain is a problem that must be overcome in order to obtain the desired effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.R. Adams, M. Asada, Y. Suematsu and S. Arai, Jpn. J. Appl. Phys., 19: L621 (1980)

    Article  Google Scholar 

  2. N.K. Dutta and R.J. Nelson, J. Appl. Phys., 53: 74 (1982)

    Article  Google Scholar 

  3. A.R. Adams, K.C. Heasman and J. Hilton, Semicond. Sci. Technol., 2: 7 (1987)

    Article  Google Scholar 

  4. A.R. Adams, Electronics Letters, 22: 249 (1989)

    Article  Google Scholar 

  5. E.P. O’Reilly, Semicond. Sci. Technol., 4: 121 (1989)

    Article  Google Scholar 

  6. E.P. O’Reilly, K.C. Heasman, A.R. Adams and G.P. Witchlow, Superlattices and Microstructures, 3: 99 (1987)

    Article  Google Scholar 

  7. A. Ghiti, W. Batty, U. Ekenburg and E.P. O’Reilly, SPIE, 861: 96 (1988)

    Google Scholar 

  8. M. Asada, A. Kameyama and Y. Suematsu, IEEE J. Quantum Electronics, QE-20: 745 (1984)

    Article  Google Scholar 

  9. A. Ghiti, E.P. O’Reilly and A.R. Adams, Electronics Letters, 25: 821 (1989)

    Article  Google Scholar 

  10. P.J.A. Thijs and T. van Dongen, Electronics Letters, 25: 1735 (1989)

    Article  Google Scholar 

  11. D. Lancefield, W. Batty, C.G. Crookes, E.P. O’Reilly, A.R. Adams, K.P. Homewood, G. Sundaram, R.J. Nicholas, M. Emeny and C.R. Whitehouse, Proc. EP2DS8, Grenoble, (1989)

    Google Scholar 

  12. M.J. Ludowise, W.T. Dietze, C.R. Lewis, M.D. Camras, N. Holonyak, Jr., B.K. Fuller and M.A. Nixon, Appl. Phys. Lett., 42: 487 (1983)

    Article  Google Scholar 

  13. S.D. Offsey, W.J. Schaff, P.J. Tasker and L.F. Eastman, IEEE Photonics Technol. Letts., 2: 9 (1990)

    Article  Google Scholar 

  14. J.S. Major, Jr., W.E. Piano, A.R. Sugg, D.C. Hall, N. Holonyak, Jr. and K.C. Hsieh, Appl. Phys. Lett., 56: 105 (1990)

    Article  Google Scholar 

  15. R.J. Mclntyre, IEEE Trans Electron Devices, ED-13: 164 (1966)

    Article  Google Scholar 

  16. C.A. Lee, R.A. Logan, R.L. Batdorf, J.J. Kleimack and W. Wiegmann, Phys. Rev., 134: A761 (1964)

    Article  Google Scholar 

  17. D.V. Lang, R. People, J.C. Bean and A.M. Sergent, Appl. Phys. Lett., 47: 1333 (1985)

    Article  Google Scholar 

  18. R. People, IEEE J Quantum Electron, QE22: 1969 (1986)

    Google Scholar 

  19. I.K. Czajkowski, J. Allam, M. Silver, A.R. Adams and M.A. Gell, IEE Proc., 137: 79 (1990)

    Google Scholar 

  20. C.L. Anderson and C.R. Crowell, Phys. Rev., B5: 2267 (1972)

    Google Scholar 

  21. C.N. Ahmad, A.R. Adams, B.J. Sealy, R.J. Nicholas and G.D. Pitt, High Pressure in Research and Industry, 2: 464 (1981)

    Google Scholar 

  22. L.V. Keldysh, Sov. Phys. JETP, 10: 509 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Adams, A.R., Allam, J., Czajkowski, I.K., Ghiti, A., O’Reilly, E.P., Ring, W.S. (1991). Strained Layer Lasers and Avalanche Photodetectors. In: Beeby, J.L., Bhattacharya, P.K., Gravelle, P.C., Koch, F., Lockwood, D.J. (eds) Condensed Systems of Low Dimensionality. NATO ASI Series, vol 253. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1348-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1348-9_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1350-2

  • Online ISBN: 978-1-4684-1348-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics