Skip to main content

Understanding Quantum Confinement in Zero-Dimensional Nanostructures: Optical and Transport Properties

  • Chapter
Science and Engineering of One- and Zero-Dimensional Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 214))

Abstract

In zero-dimensional semiconductor nanostructures with motion confined in all directions, electronic states are discrete. In contrast, the spectrum of single-particle states in a quantum well or quantum-well wire is a set of subbands of two- or one-dimensional states, respectively. Each subband is a continuum of states. Because the single-particle spectrum for a zero-dimensional quantum box is discrete rather than a continuum, understanding confinement effects in these systems presents unique challenges not addressed for wells and wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Sandroff, D. M. Hwang, and W. M. Chung, Carrier confinement and special crystallite dimensions in layered semiconductor colloids, Phys. Rev. B, 33: 5953 (1986).

    Article  Google Scholar 

  2. J. Warnock and D. D. Awschalom, Picosecond studies of electron confinement in simple colored glasses, Appl. Phys. Lett. 48: 425 (1986).

    Google Scholar 

  3. L. Brus, Zero-dimensional “exciton” in semiconductor clusters, IEEE J. Quantum Electron. QE-22:1909 (1986) and the references therein.

    Google Scholar 

  4. M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, and H. D. Shih, Spatial quantization in GaAs-AlGaAs multiple quantum dots, J. Vac. Sci. Technol. B4: 358 (1986).

    ADS  Google Scholar 

  5. K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M. C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells, Appl. Phys. Lett. 49: 1043 (1986).

    Google Scholar 

  6. J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes, Appl. Phys. Lett. 49: 1275 (1986).

    Google Scholar 

  7. H. Temkin, G. J. Dolan, M. B. Panish, and S. N. G. Chu, Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes, Appl. Phys. Lett. 50: 413 (1987).

    Google Scholar 

  8. Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Ravikumar, and S. Arai, Light emission from quantum-box structure by current injection, Jpn. J. Appl. Phys. 26: L225 (1987).

    Article  ADS  Google Scholar 

  9. P. M. Petroff, J. Cibert, A. C. Gossard, G. J. Dolan, and C. W. Tu, Interface structure and optical properties of quantum wells and quantum boxes, J. Vac. Sci. Technol. B5: 1204 (1987).

    Article  Google Scholar 

  10. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure, Phys. Rev. Lett. 60:535 (1988). After this chapter was prepared, M. Reed reported a new analysis of the data which indicated that the observed tunneling occurs through the n=1 resonance rather than the n=2 resonance. The qualitative physics of qunatum box resonance tunneling discussed in this chapter is the same for both resonances.

    Google Scholar 

  11. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Theory of the linear and nonlinear optical properties of semiconductor microcrystallites, Phys. Rev. B 35: 8113 (1987).

    Article  Google Scholar 

  12. G. W. Bryant, Hydrogenic impurity states in quantum-well wires: shape effects, Phys. Rev. B 31: 7812 (1985).

    Article  Google Scholar 

  13. G. W. Bryant, Hydrogenic impurity states in quantum-well wires, Phys. Rev. B 29: 6632 (1984).

    Article  Google Scholar 

  14. G. W. Bryant, Excitons in quantum boxes: correlation effects and quantum confinement, Phys. Rev. B, 37: 8763 (1988).

    Article  Google Scholar 

  15. G. W. Bryant, Electrons and holes in quantum boxes, in: “Interfaces, Quantum Wells, and Superlattices,” C. R. Leavens and R. Taylor, eds. Plenum, New York (1988).

    Google Scholar 

  16. G. W. Bryant, Excitons in zero-dimensional quantum boxes: correlation and confinement, Comments Condensed Matter Phys. 14: 277 (1989).

    Google Scholar 

  17. M. Asada, Y. Miyamoto, and Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers, IEEE J. Quantum Electron. QE-22: 1915 (1986).

    Google Scholar 

  18. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, Electroabsorption of highly confined systems: theory of the quantum-confined FranzKeldysh effect in semiconductor quantum wires and dots, Appl. Phys. Lett. 52: 2154 (1988).

    Google Scholar 

  19. K. J. Vahala, Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain, IEEE J. Quantum Electron. QE-24: 523 (1988).

    Google Scholar 

  20. T. Takagahara, Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots, Phys. Rev. B 36: 9293 (1987).

    Article  Google Scholar 

  21. L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Third-order optical nonlinearities in semiconductor nanostructures, Phys. Rev. B 38: 8142 (1988).

    Article  Google Scholar 

  22. E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37: 1273 (1988).

    Article  Google Scholar 

  23. E. Hanamura, Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well, Phys. Rev. B 38: 1228 (1988).

    Article  Google Scholar 

  24. G. W. Bryant, Electronic band structure of semiconductor nanostructure arrays, Phys. Rev. B (submitted). See references therein for other work.

    Google Scholar 

  25. G. W. Bryant, Resonant tunneling in zero-dimensional nanostructures, Phys. Rev. B 39: 3145 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bryant, G.W. (1990). Understanding Quantum Confinement in Zero-Dimensional Nanostructures: Optical and Transport Properties. In: Beaumont, S.P., Torres, C.M.S. (eds) Science and Engineering of One- and Zero-Dimensional Semiconductors. NATO ASI Series, vol 214. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5733-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5733-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5735-3

  • Online ISBN: 978-1-4684-5733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics