Skip to main content

Part of the book series: Nato Advanced Study Institutes Series ((NSSB,volume 23))

Abstract

Photomultiplier tubes which perform virtually ideal digital detection of electromagnetic radiation at visible frequencies are now widely available. The only sources of noise are a generally low dark count, typically a few counts per second, and the unavoidable shot noise due to the random (Poisson) nature of the detection process. The output of such detectors consists of a series of discrete pulses of charge, each corresponding to a single photodetection, which constitutes a Poisson process rate-modulated by variations in the incident intensity. Coincident with the development of these detectors has been the development of hardware based on integrated circuits which can perform errorless analysis of digital signals at frequencies up to about 108 Hz. Combination of these two technologies provides the techniques of photon correlation.1 (We will include the study of single-interval photon statistics in the generic term “photon correlation”.) With speed and accuracy close to the theoretical limit these techniques can be used to analyze fluctuating optical signals of any origin (provided the fluctuation time is ≳10−7 sec).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H Z Cummins and E R Pike, Photon Correlation and Light-Beating Spectroscopy, (New York: Plenum), 1974.

    Google Scholar 

  2. M Born and E Wolf, Principles of Optics (London: Pergamon), 1959.

    MATH  Google Scholar 

  3. D W Schaefer and B J Berne, Phys Rev Letters 28, 475, 1972.

    Article  ADS  Google Scholar 

  4. H Z Cummins, N Knable and Y Yeh, Phys Rev Letters 12, 150, 1964.

    Article  ADS  Google Scholar 

  5. S S Alpert, Y Yeh and E Lipworth, Phys Rev Letters 14, 486, 1965.

    Article  ADS  Google Scholar 

  6. N C Ford and G B Benedek, Phys Rev Letters 15, 649, 1965.

    Article  ADS  Google Scholar 

  7. S B Dubin, J H Lunacek and G B Benedek, Proc Nat Acad Sci (US) 57, 1164, 1967.

    Article  ADS  Google Scholar 

  8. H Z Cummins, in Photon Correlation and Light-Beating Spectroscopy, Eds H Z Cummins and E R Pike, (New York: Plenum), p 225, 1974.

    Google Scholar 

  9. B R Ware, Adv Colloid Interface Sci 4, 1, 1974.

    Article  Google Scholar 

  10. P A Fleury and J P Boon, in Advances in Chemical Physics 24, Eds I Prigogine and S A Rice, (New York: Wiley), p 1, 1973.

    Chapter  Google Scholar 

  11. B Chu, Laser Light Scattering, (New York: Academic), 1974.

    Google Scholar 

  12. D W Schaefer and P N Pusey, Phys Rev Letters 29, 843, 1972.

    Article  ADS  Google Scholar 

  13. E Jakeman and P N Pusey, J Phys A (GB) 6, L88, 1973.

    Article  ADS  Google Scholar 

  14. E Jakeman and P N Pusey, Physics Letters 44A, 456, 1973.

    ADS  Google Scholar 

  15. M Bertolotti, in Photon Correlation and Light Beating Spectroscopy, Eds H Z Cummins and E R Pike, (New York: Plenum), p 41, 1974.

    Google Scholar 

  16. D W Schaefer, in Laser Applications to Optics and Spectroscopy, Eds S F Jacobs et al (Reading, Mass: Addison-Wesley), 1974.

    Google Scholar 

  17. B Crosignani, P Di Porto and M Bertolotti, Statistical Properties of Scattered Light, (New York: Academic), 1975.

    Google Scholar 

  18. C D Cantrell, Thesis, Princeton University, 1968.

    Google Scholar 

  19. O L Krivanek and A Howie, J Appl Cryst 8, 213, 1975.

    Article  Google Scholar 

  20. E Jakeman and P N Pusey, IEEE Trans Antennas and Propagation, to be published, 1976.

    Google Scholar 

  21. E R Pike, Introductory article, this volume.

    Google Scholar 

  22. B L Morgan and L Mandel, Phys Rev Letters 16, 1012, 1966.

    Article  ADS  Google Scholar 

  23. Lord Rayleigh, Phil Mag 10, 73, 1880.

    Google Scholar 

  24. J C Kluyver, Proc Roy Acad Sci Amsterdam 8, 341, 1905.

    Google Scholar 

  25. N A Clark, J H Lunacek and G B Benedek, Am J Phys 38, 575, 1970.

    Article  ADS  Google Scholar 

  26. A J F Siegert, MIT Rad Lab Rep No 465, 1943.

    Google Scholar 

  27. S O Rice, in Noise and Stochastic Processes, Ed N Wax, (New York: Dover) p 133, 1954.

    Google Scholar 

  28. I S Reed, IRE Trans Inform Theory, IT-8, 194, 1962.

    Article  Google Scholar 

  29. F T Arecchi, Phys Rev Letters 15, 912, 1965.

    Article  ADS  Google Scholar 

  30. H Z Cummins, in Quantum Optics, Ed R J Glauber, (Academic Press), p 247, 1969.

    Google Scholar 

  31. L Mandel, Phys Rev 181, 75, 1969.

    Article  ADS  Google Scholar 

  32. H Z Cummins and H L Swinney, in Progress in Optics 8, Ed E Wolf, (Amsterdam: North-Holland), p 133, 1970.

    Google Scholar 

  33. E Jakeman, P N Pusey and J M Vaughan, Optics Communications 17, 305, 1976.

    Article  ADS  Google Scholar 

  34. P N Pusey and J M Vaughan, in Dielectric and Related Molecular Processes Vol 2, Ed M Davies, (London: The Chemical Society), p 48, 1975.

    Chapter  Google Scholar 

  35. M Bertolotti, B Crosignani and P DiPorto, J Phys A 3, L37, 1970.

    Article  ADS  Google Scholar 

  36. G N Ramachandran, Proc Indian Acad Sci A 18, 190, 1943.

    Google Scholar 

  37. P Hariharan, Optica Acta 19, 791, 1972.

    Article  ADS  Google Scholar 

  38. C V Raman, Lectures in Physical Optics, Part 1, (Bangalore: Indian Academy of Sciences), p 160, 1959.

    Google Scholar 

  39. B J Berne and R Pecora, Dynamic Light Scattering (New York: Wiley), 1976.

    Google Scholar 

  40. G Parry, in Topics in Applied Physics, Vol 9: Laser Speckle and Related Phenomena, Ed J C Dainty, (Heidelberg: Springer-Verlag), p 77, 1975.

    Chapter  Google Scholar 

  41. W Martienssen and E Spiller, Am J Phys 32, 919, 1964.

    Article  ADS  Google Scholar 

  42. A T Forrester, J Opt Soc Am 51, 253, 1961.

    Article  ADS  Google Scholar 

  43. K Pearson, Draper’s Company Research Memoirs, Biometrie Series 3, (London: Dulau and Co), 1906.

    Google Scholar 

  44. Lord Rayleigh, Phil Mag 37, 321, 1919.

    Google Scholar 

  45. A Erdelyi, W Magnus, F Oberhettinger and F G Tricomi, Tables of Integral Transforms, Volume 1, (New York: McGraw-Hill), 1954.

    Google Scholar 

  46. S H Chen and P Tartaglia, Optics Communications 6, 119, 1972.

    Article  ADS  Google Scholar 

  47. S Chandrasekhar, Rev Mod Phys 15, 1, 1943.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Lord Rothschild, Nature 171, 512; also, J Exp Biol 30, 178, 1953.

    Google Scholar 

  49. P N Pusey, D W Schaefer and D E Koppel, J Phys A (GB) 7, 530, 1974.

    Article  ADS  Google Scholar 

  50. D W Schaefer, Science 180, 1293, 1973.

    Article  ADS  Google Scholar 

  51. D Magde, E L Elson and W W Webb, Phys Rev Letters 29, 705, 1972.

    Article  ADS  Google Scholar 

  52. P J Bourke, J Butterworth, L E Drain, P A Egelstaff, A J Hughes, P Hutchinson, D A Jackson, E Jakeman, B Moss, J O’Shaughnessy, E R Pike and P Schofield, J Phys A (GB) 3, 228, 1970.

    Google Scholar 

  53. S H Chen, P Tartaglia and P N Pusey, J Phys A (GB) 6, 490, 1973.

    Article  ADS  Google Scholar 

  54. R Barakat and J Blake, Phys Rev A 13, 1122, 1976.

    Article  ADS  Google Scholar 

  55. H Kogelnik and T Li, Applied Optics 5, 1550, 1966.

    Article  ADS  Google Scholar 

  56. B J Berne, this volume.

    Google Scholar 

  57. E L Elson and D Magde, Biopolymers 13, 1, 1974.

    Article  Google Scholar 

  58. R F Voss and J Clarke, J Phys A (GB) 9, 561, 1976.

    Article  ADS  Google Scholar 

  59. G Banks, D W Schaefer and S S Alpert, Biophys J 15, 253, 1975.

    Article  Google Scholar 

  60. D Magde, E L Elson and W W Webb, Biopolymers 13, 29, 1974.

    Article  Google Scholar 

  61. E L Elson and W W Webb, Ann Rev Biophys Bioeng 4, 311, 1975.

    Article  Google Scholar 

  62. W W Webb, Quart Rev Biophys 9, 49, 1976.

    Article  Google Scholar 

  63. M Poo and R A Cone, Nature 247, 438, 1974.

    Article  ADS  Google Scholar 

  64. J Schlessinger, D E Koppel, D Axelrod, K Jacobson, W W Webb and E L Elson, Proc Nat Acad Sci (US), 1976, to be published.

    Google Scholar 

  65. J P Boon, R Nossal and S H Chen, Biophys J 14, 847, 1974.

    Article  Google Scholar 

  66. D W Schaefer and B J Berne, Biophys J 15, 785, 1975.

    Article  Google Scholar 

  67. G C Duncan and M R Olschewsky, J Chem Phys 63, 1868, 1975.

    Article  ADS  Google Scholar 

  68. E Jakeman and P N Pusey, J Phys A (GB) 8, 369, 1975.

    Article  ADS  Google Scholar 

  69. P N Pusey and E Jakeman, J Phys A (GB) 8, 392, 1975.

    Article  ADS  Google Scholar 

  70. E Jakeman, in Photon Correlation and Light-Beating Spectroscopy, Eds H Z Cummins and E R Pike, (New York: Plenum), p 75, 1974.

    Google Scholar 

  71. G H Heilmeyer, L A Zanoni and L A Barton, Proc IEEE 56, 1162, 1968.

    Article  Google Scholar 

  72. C Deutsch and P N Keating, J Appl Phys 40, 4049, 1969.

    Article  ADS  Google Scholar 

  73. F Scudieri and M Bertolotti, J Opt Soc Am 64, 776, 1974.

    Article  ADS  Google Scholar 

  74. P Tartaglia and S H Chen, J Chem Phys 58, 4389, 1973.

    Article  ADS  Google Scholar 

  75. V Korenman, Phys Rev A 2, 449, 1970.

    Article  ADS  Google Scholar 

  76. J Swift, Ann Phys (NY) 75, 1, 1973.

    Article  ADS  Google Scholar 

  77. N P Malomuzh, V P Oleinik and I Z Fisher, Soviet Phys JETP 36, 1223, 1973.

    ADS  Google Scholar 

  78. E R Pike, Photon correlation velocimetry, this volume.

    Google Scholar 

  79. V Bluemel, L M Narducci and R A Tuft, J Opt Soc Am 62, 1309, 1972.

    Article  ADS  Google Scholar 

  80. J W Strohbehn, T Wang and J P Speck, Radio Science 10, 59, 1975.

    Article  ADS  Google Scholar 

  81. F Davidson and A Gonzalez-del-Valle, J Opt Soc Am 65, 655, 1975.

    Article  ADS  Google Scholar 

  82. E Jakeman and J G McWhirter, J Phys A (GB) 9, 785, 1976.

    Article  ADS  Google Scholar 

  83. E N Bramley and M Young, Proc IEE 114, 553, 1967.

    Google Scholar 

  84. E Jakeman, E R Pike and P N Pusey, Nature 263, 215, 1976.

    Article  ADS  Google Scholar 

  85. G N Watson, A Treatise on the Theory of Bessel Functions, (Cambridge University Press), 1944.

    Google Scholar 

  86. A Erdelyi, W Magnus, F Oberhettinger and F G Tricomi, Tables of Integral Transforms, Volume 2, (New York: McGraw-Hill), 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pusey, P.N. (1977). Statistical Properties of Scattered Radiation. In: Cummins, H.Z., Pike, E.R. (eds) Photon Correlation Spectroscopy and Velocimetry. Nato Advanced Study Institutes Series, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1668-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1668-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1670-2

  • Online ISBN: 978-1-4757-1668-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics