Skip to main content

Abstract

The laboratory and small pilot plant bioreactors of Chapter 8 are used to develop new processes and to improve our understanding of existing processes. These small-scale bioreactors can be assumed to be homogeneous with respect to substrate and metabolic product concentrations, and the mass balances are therefore rather simple. The industrial application of microorganisms does, however, involve bioreactors up to 1000 m3 in size, in which concentration gradients will inevitably exist. When the microorganisms are grown in these large bioreactors, they may therefore experience a continuously changing environment. The scale-up of a newly developed process from the laboratory to industry is therefore difficult. It may require a considerable research effort and may in some cases become a real bottleneck in the development of a new process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balmer, G. J., Moore, I. P. T., and Nienow, A. W. (1987). “Aerated and unaerated poocr.m d ma.s transfer characteristics of Prochem agitators,” in Biotechnology ProcesAc.s: St tilt’ Ur du t t/rmorv. Ho, C. S. and Oldshue, J. Y., eds., AIChE, New York, 116–127.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., and Hassager, O. (1987). Dynamics of Polymer’, Elm,lh. A„I I. livid Dynamics, John Wiley Sons, New York.

    Google Scholar 

  • Bryant, J. (1977), J. (1977). “The characterization of mixing in fermenters,” Adv. Bioche’’’. l ow,. 5. 1001

    Google Scholar 

  • Christensen, L. H. (1992). Modelling of the Penicillin Fermentation, Ph.D. thesis. 1 cchni.,l I nRcr.uc of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Crozier, D. B. A. (1990). “A detailed study of the flow characteristics in a tall stirred tank. l’i,s. 1_aser anemometry-3rd International Conference, Springer-Verlag, Berlin, 3593

    Google Scholar 

  • Deckwer W.-D. (1992). Bubble Column Reactors, John Wiley Sons, Chichester_

    Google Scholar 

  • Kossen, N. W. F. and Oosterhuis, N. M. G. (1985). “Modelling and scaling-up of bioreactors,” in Biotechnology 2nd edn., Rehm, H.-J. and Reed, G., eds., VCH-Verlag, Weinheim, Germany.

    Google Scholar 

  • Levenspiel, O. (1972). “Chemical reaction engineering,” 2nd ed. John Wiley Sons, New York.

    Google Scholar 

  • Joshi, J. B., Patil, T. A., Ranade, V. V., and Shah, Y. T. (1990). “Measurement of hydrodynamic parameters in multiphase sparged reactors,” Rev. Chem. Eng. 6, 74–227.

    Article  Google Scholar 

  • Mann, R., Mavros, P. P., and Middleton, J. C. (1981). “A structured stochastic flow model interpreting flow follower data from a stirred vessel,” Trans. Institution Chem. Engrs. 59, 271–278.

    CAS  Google Scholar 

  • McDonough, R. J. (1992). Mixing for the Process Industries, Van Nostrand-Reinhold, New York.

    Book  Google Scholar 

  • Moser, A. (1988). Bioprocess Technology, Springer-Verlag, New York.

    Book  Google Scholar 

  • Nienow, A. W. (1990). “Agitators for mycelial fermentations,” Tibtech 8, 224–233.

    Article  CAS  Google Scholar 

  • Nienow, A. W. and Lilly, M. D. (1979). “Power drawn by multiple impellers in sparged vessels,” Biotechnol. Bioeng. 21, 2341–2345.

    Article  Google Scholar 

  • Nienow, A. W. and Elston, T. P. (1988). “Aspects of mixing in rheologically complex fluids,” Chem. Eng. Res. Des. 66, 5–15.

    CAS  Google Scholar 

  • Oosterhuis, N. M. G. and Kossen, N. W. F. (1983). “Oxygen transfer in a production scale bioreactor,” Chem. Eng. Res. Des. 61, 308–312.

    CAS  Google Scholar 

  • Pedersen, A. G. (1992). Characterization and Modelling of Bioreactors, Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Pedersen, A. G., Bundgârd, M., Nielsen, J., Villadsen, J., and Hassager, O. (1993). “Rheological characterization of media containing Penicillium chrysogenum, ” Biotechnol. Bioeng. 41, 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Peters, H.-U., Herbst, H., Hesselink, P. G. M., Lünsdorf, H., Schumpe, A., and Deckwer, W.-D. (1989). “The influence of agitation rate on xanthan production by Xanthomonas campestris, ” Biotechnol. Bioeng. 34, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  • Ranade, V. V. and Joshi, J. B. (1989). “Flow generated by pitched blade turbines: I. Measurements using laser doppler anemometer,” Chem. Eng. Commun. 81, 197–224.

    Article  CAS  Google Scholar 

  • Roels, J. A., van den Berg, J., and Voncken, R. M. (1974). “The rheology of mycelial broths,” Biotechnol. Bioeng. 16, 181–208.

    Article  Google Scholar 

  • Schügerl, K. (1981). “Oxygen transfer into highly viscous media,” Adv. Biochem. Eng. 19, 71–174.

    Google Scholar 

  • Schügerl, K. (1991). Bioreaction Engineering, Vol. 2, John Wiley Sons, Chichester, U.K.

    Google Scholar 

  • Schügerl, K., Lücke, J., and Oels, U. (1977). “Bubble column bioreactors,” Adv. Biochem. Eng. 7, 1–84.

    Article  Google Scholar 

  • Suh, 1.-S., Schumpe, A., Deckwer, W.-D., and Kulicke, W.-M. (1991). “Gas-liquid mass transfer in the bubble column with viscoelastic liquid,” Can. J. Chem. Eng. 69, 506–512.

    Google Scholar 

  • Sweere, A. P. J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1987). “Regime analysis and scaledown: tools to investigate the performance of bioreactors,” Enz. Microb. Technol. 9, 386–398.

    Article  CAS  Google Scholar 

  • Sweere, A. P. J., Mesters, J. R., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988a). “Experimental simulation of oxygen profiles and their influence on bakers yeast production: I. Onefermentor system,” Biotechnol. Bioeng. 31, 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Sweere, A. P. J., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988b). “Experimental simulation of oxygen profiles and their influence on bakers yeast production: II. Two-fermentor system,” Biotechnol. Bioeng. 31, 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Vashitz, O. and Sheintuch, M. (1991). “Analysis of polymer synthesis rates during steady state growth of X. campestris, ” Biotechnol. Bioeng. 37, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • van de Vusse, J. G. (1962). “A new model for the stirred tank reactor, Chem. Eng. Sci. 17, 507–521.

    Google Scholar 

  • Westerterp, K. R., van Swaaij, W. P. M., and Beenackers, A. C. M. (1984). Chemical Reactor Design and Operation, J. Wiley Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Bioreactor Modeling. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics