Skip to main content

Ecology and Biogeochemistry of in Situ Groundwater Bioremediation

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 15))

Abstract

The activity of microorganisms has a significant impact on the chemical composition of groundwaters (Chapelle, 1993). Microbial processes in both shallow (Madsen, 1995) and deep (Lovley and Chapelle, 1995) pristine aquifers have recently been reviewed in detail. The purpose of this chapter is to summarize recent research on the microbial ecology and biogeochemistry of contaminated aquifers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aamand, J., Jorgensen, C., Arvin, E., and Jensen, B. K., 1989, Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater, J. Contam. Hvdrol. 4: 299–312.

    Article  CAS  Google Scholar 

  • Acton, D. W., and Barker, J. F., 1992, In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters, J. Contam. Hvdrol. 9: 325–352.

    Article  CAS  Google Scholar 

  • Adriaens, P., Kohler, H.-P. E., Kohler-Staub, D., and Focht, D. D., 1989, Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4’-dichlorobiphenyl, Appl. Environ. Microbial. 55: 887–892.

    CAS  Google Scholar 

  • Ahmann, D., Roberts, A. L., Krumholtz, L. R. and Morel, F. M. M., 1994, Microbe grows by reducing arsenic, Nature 317: 750.

    Article  Google Scholar 

  • Al-Bashir, B., Cseh, T., Leduc, R., and Samson, R., 1990, Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions, Appl. Microbial. Biotechnol. 34: 414–419.

    Article  CAS  Google Scholar 

  • Alexander, M., 1994, Biodegradation and Bioremediation, Academic Press, London.

    Google Scholar 

  • Altenschmidt, U., and Fuchs, G., 1991, Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-co A as central intermediate, Arch. Microhiol. 156: 152–158.

    Article  CAS  Google Scholar 

  • Alvarez, P. J. J., and Vogel, T. M., 1991, Substrate interactions of benzene, toluene and para-xylene during microbial degradation by pure cultures and mixed culture aquifers slurries, Appl. Environ. Microbial. 57: 2981–2985.

    CAS  Google Scholar 

  • Anderson, R. T., Caw, C. V., and Lovley, D. R., 1997, Benzene oxidation in the Fe(III) reduction zone of a petroleum-contaminated aquifer, Environ. Sci. Technol. submitted.

    Google Scholar 

  • Anid, P. J., Alvarez, P. J. J., and Vogel, T. M., 1993, Biodegradation of monoaromatic hyrocarbons in aquifer columns amended with hydrogen peroxide and nitrate, Water Res. 27: 685–691.

    Article  CAS  Google Scholar 

  • Armstrong, A. Q., Hodson, R. E., Hwang, H.-M., and Lewis, D. L., 1991, Environmental factors affecting toluene degradation in ground water at a hazardous waste site, Environ. Toxicol. Chem. 10: 147–158.

    Article  CAS  Google Scholar 

  • Aronstein, B. N., Calvillo, Y. M., and Alexander, M., 1991, Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil, Environ. Sci. Technol. 25: 1728–1731.

    Article  CAS  Google Scholar 

  • Arvin, E., Jensen, B., Aamand, J., and Jorgensen, C., 1988, The potential of free-living ground water bacteria to degrade aromatic hydrocarbons and heterocyclic compounds, Wat. Sci. Tech. 20: 109–118.

    CAS  Google Scholar 

  • Arvin, E., Jensen, B. K., and Gundersen, A. T., 1989, Substrate interactions during aerobic biodegradation of benzene, Appl. Environ. Microbiol. 55: 3221–3225.

    PubMed  CAS  Google Scholar 

  • Baedecker, M. J., and Back, W., 1979, Hydrogeological processes and chemical reactions at a landfill, Ground Water 17: 429–437.

    Article  CAS  Google Scholar 

  • Baedecker, M. J., Siegel, D. I., Bennett, P., and Cozzarelli, I. M., 1989, The fate and effects of crude oil in a shallow aquifer I. The distribution of chemical species and geochemical facies, in: U. S. Geological Survey Water Resources Division Report 88–4220, (G. E. Mallard and S. E. Ragone, eds., U. S. Geological Survey, Reston, VA., pp. 13–20.

    Google Scholar 

  • Baedecker, M. J., Cozzarelli, I. M., Siegel, D. I., Bennett, P. C., and Eganhouse, R. P., 1993, Crude oil in a shallow sand and gravel aquifer: 3. Biogeochemical reactions and mass balance modeling in anoxic ground water, Appl. Geochem. 8: 569–586.

    Article  CAS  Google Scholar 

  • Bagley, D. M., and Gossett, J. M., 1990, Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures, Appl. Environ. Microbiol. 56: 2511–2516.

    PubMed  CAS  Google Scholar 

  • Baker, K. H., and Herson, D. S., 1990, In situ bioremediation of contaminated aquifers and subsurface soils, Geomicrobiology Journal 8: 133–146.

    Article  CAS  Google Scholar 

  • Baldi, F., Semplici, F., and Filippelli, M., 1991, Environmental applications of mercury resistant bacteria, Water, Air, Soil Pollut. 56: 465–475.

    Article  CAS  Google Scholar 

  • Baldi, F., Boudou, A., and Ribeyre, F., 1992, Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgC1) in a controlled system, Arch. Environ. Contam. Toxicol. 22: 439–444.

    Article  CAS  Google Scholar 

  • Balkwill, D. L., 1989, Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina, Geo-microbio!. J. 7: 33–52.

    Google Scholar 

  • Balkwill, D. L., and Ghiorse, W. C., 1985, Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma, Appl. Environ. Microbiol. 50: 580–588.

    PubMed  CAS  Google Scholar 

  • Balkwill, D. L., Frederickson, J. K., and Thomas, J. M., 1989, Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain subsurface sediments, Appl. Environ. Microbiol. 55: 1058–1065.

    PubMed  CAS  Google Scholar 

  • Barbaro, J. R., Barker, J. F., Lemon, L. A., and Mayfield, C. I., 1992, Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations, J. Contam. Hydrol. 11: 245–272.

    Article  CAS  Google Scholar 

  • Barcelona, M. J., and Holm, T. R., 1991, Oxidation-reduction capacities of aquifers solids, Environ. Sci. Technol. 25: 1565–1572.

    Article  CAS  Google Scholar 

  • Barkay, T., 1987, Adaptation of aquatic microbial communities to Hg2+ stress, Appl. Environ. Microbio!. 53: 2725–2732.

    CAS  Google Scholar 

  • Barkay, T., and Olson, B. H., 1986, Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress, Appl. Environ. Microbiol. 52: 403–406.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Liebert, C., and Gillman, M., 1989a, Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg° in natural waters, Appl. Environ. Microbiol. 55: 1196–1202.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Liebert, C., and Gillman, M., 1989b, Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance, Appl. Environ. Microbiol. 55: 1574–1577.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Turner, R. R., VandenBrook, A., and Liebert, C., 1991, The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community, Microh. Ecol. 21: 151–16I.

    Article  CAS  Google Scholar 

  • Barker, J. F.. Patrick, G. C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer, Ground Water Monitoring Review, 7: 64–71.

    CAS  Google Scholar 

  • Barrio-Loge, G. A., Parsons, F. Z., Narbaitz. R. M., and Lorenzo, P. A., 1990, Enhanced anaerobic biodegradation of vinyl chloride in ground water. Environ. Toricol. Chem. 9: 430–415.

    Google Scholar 

  • Beeman, R. E., and Suflita, J. M., 1987, Microbial ecology of a shallow unconfined groundwater aquifer polluted by municipal landfill leachate, Microb. Ecol. 14: 39–54.

    Article  Google Scholar 

  • Beeman. R. E., Howell, J. E., Shoemaker, S. H., Salazar, E. A., and Buttram, J. R., 1994 ) A field evaluation of in situ microbial reductive dehalogenation by the biotransformation of chlorinated ethenes, in Bioremediation of Chlorinated and Polvcvlic Aromatic Hydrocarbon Compounds, (Hinchee, R. E.. Leeson. A.. Semprini, L., and Ong, S. K. eds., Lewis Publishers, Boca Raton, pp. 14–27.

    Google Scholar 

  • Beller, H. R., Grbic-Galic, D., and Reinhard. M., 1992, Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process, Appl. Environ. Microbiol. 58: 786–793.

    PubMed  CAS  Google Scholar 

  • Beloin, R. M., Sinclair, J. L., and Ghiorse. W. C., 1988, Distribution and activity of microorganisms in subsurface sediments of a pristine site in Oklahoma. Microbial Ecology 16: 85–97.

    Article  CAS  Google Scholar 

  • Bengtsson, G., 1989, Growth and metabolic flexibility in groundwater bacteria, Microb. Ecol. 18: 235–248.

    Article  CAS  Google Scholar 

  • Bengtsson. G., and Annadotter. H., 1989, Nitrate reduction in a groundwater microcosm determined by ‘5N gas chromatography-mass spectrometry, Appl. Environ. Microb. 55: 2861–2870.

    Google Scholar 

  • Bengtsson, G., and Bergwall, C., 1995, Heterotrophic denitrification potential as an adaptive response in groundwater bacteria, FEMS Microbial. Ecol. 16: 307–318.

    Article  CAS  Google Scholar 

  • Bennett, J. L., Updegralf, J. M., Pereira, W. E., and Rostad, C. E., 1985, Isolation and degradation of four species of quinoline-degrading Pseudomonas from a creosote-contaminated site at Pensacola, Florida, Microbios Leit. 29: 147–154.

    CAS  Google Scholar 

  • Bianchi-Mosquera, G. C., Allen-King, R. M., and Mackay, D. M.. 1994, Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound. Ground Water Monitoring Review, 14: 120–128.

    CAS  Google Scholar 

  • Bjerg, P. L., Rugge, K.. Pedersen, J. K.. and Christensen, T. H., 1995, Distribution of redoxsensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark, Environ. Sci. Technol. 29: 1387–1394.

    Article  PubMed  CAS  Google Scholar 

  • Bone, T. L., and Balkwill, D. L., 1988, Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma, Microbial Ecology 16: 49–64.

    Article  Google Scholar 

  • Bopp, L. H., and Ehrlich, H. L., 1988, Chromate resistance and reduction in Pseudomonas fluore.scens strain LB300, Arch. Microbiol. 150: 426–431.

    Article  CAS  Google Scholar 

  • Borden, R. C., Gomez, C. A., and Becker, M. T., 1995, Geochemical indicators of intrinsic bioremediation. Ground Water 33: 180–189.

    Article  CAS  Google Scholar 

  • Bottcher, J., Strebel, O., Voerkelius, S., and Schmidt, H. L., 1990, Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hvdrol. 114: 413–424.

    Article  Google Scholar 

  • Bouwer, E. J., 1992, Bioremediation of organic contaminants in the subsurface, in: Environmental Microbiology ( R. Mitchell, ed.), John Wiley, New York, pp. 287–318.

    Google Scholar 

  • Bouwer, E. J., and McCarty, P. L., 1983, Transformation of halogenated organic compounds under denitrification conditions, Appl. Environ. Microbiol. 45: 1295–1299.

    PubMed  CAS  Google Scholar 

  • Bouwer, E. J., and Zehnder, A. J. B., 1993, Bioremediation of organic compounds—putting microbial metabolism to work, TIBTECH 11: 360–367.

    Article  CAS  Google Scholar 

  • Bouwer, E., Durant, N., Wilson, L., Zhang, W., and Cunningham, A., 1994, Degradation of xenobiotic compounds in situ: capabilities and limits, FEMS Microbiol. Rev. 15: 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. P., Jimenez, L., Rosario, I., Hazen, T. C., and Sayler, G. S., 1993, Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site, Appl. Environ. Microbiol. 59: 2380–2387.

    PubMed  CAS  Google Scholar 

  • Bradley, P. M., Aelion, C. M., and Vroblesky, D. A., 1992, Influence of environmental factors on denitrification in sediment contaminated with JP-4 jet fuel, Ground Water 30: 843–848.

    Article  CAS  Google Scholar 

  • Braester, C., and Martinell, R., 1988, The vyredox and nitredox methods of in situ treatment of groundwater, Wat. Sci. Tech. 20: 149–163.

    CAS  Google Scholar 

  • Brockman, F. J., Denovan, B. A., Hicks, R. J., and Frederickson, J. K., 1989, Isolation and characterization of quinoline-degrading bacteria from subsurface sediments, Appl. Environ. Microbiol. 55: 1029–1032.

    PubMed  CAS  Google Scholar 

  • Brown, R. A., and Crosbie, J. R., 1994, Oxygen sources for in situ bioremediation, in: Bioremediation Field Experience (E. P. Flathman, E. D. Jerger, and H. J. Exner, eds., Lewis Publishers, Boca Raton, pp. 311–332.

    Google Scholar 

  • Brown, R. A., Norris, R. D., and Raymond, R. L., 1984, Oxygen transport in contaminated aquifiers with hydrogen peroxide. Petroleum Hydrocarbons and Organic Chemicals in Ground Water—Prevention, Detection, and Restoration, National Water Well Association, Worthington, OH, pp. 441–450.

    Google Scholar 

  • Brunner, W., Staub, D., and Leisinger, T., 1980, Bacterial degradation of dichloroethane, Appl. Environ. Microbiol., 40: 950–958.

    CAS  Google Scholar 

  • Buchanan-Mappin, J. M., Wallis, P. M., and Buchanan, A. G., 1985. Enumeration and identification of heterotrophic bacteria in groundwater and in a mountain stream, Can. J. Microbial. 32: 93–98.

    Article  Google Scholar 

  • Caccavo, F., Jr., Blakemore, R. P., and Lovley, D. R., 1992, A hydrogen-oxidizing, Fe(III)reducing microorganism from the Great Bay Estuary, New Hampshire, Appl. Environ. Microbiol. 58:3211–3216.

    Google Scholar 

  • Caccavo, F., Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., and McInerney, M. J., 1994, Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism, Appl. Environ. Microbiol. 60: 3752–3759.

    CAS  Google Scholar 

  • Cerniglia, C., E., 1992, Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation 3: 351–368.

    Article  CAS  Google Scholar 

  • Champ, D. R., Gulens, J., and Jackson, R. E., 1979, Oxidation-reduction sequences in ground water flow systems, Can. J. Earth Sci. 16: 12–23.

    Article  CAS  Google Scholar 

  • Chang, M.-K., Voice, T. C., and Criddle, C. S., 1993, Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates, Biotechnol. Bioeng. 41: 1057–1065.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., 1993, Ground-water Microbiology and Geochemistry, John Wiley, New York. Chapelle, F. H., and Lovley, D. R., 1990, Rates of microbial metabolism in deep coastal plain aquifers, Appl. Environ. Microbiol. 56: 1865–1874.

    Google Scholar 

  • Chapelle, F. H., and Lovley, D. R., 1992, Competitive exclusion of sulfate reduction by Fe(1II)reducing bacteria: a mechanism for producing discrete zones of high-iron ground water, Ground Water 30: 29–36.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., McMahon, P. B., Dubrovsky, N. M., Fujii, R. F., Oaksford, E. T., and Vroblesky, D. A., 1995, Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems, Water Resour. Res. 31: 359–371.

    Article  CAS  Google Scholar 

  • Chapelle, F. H., Bradley, P. M., Vroblesky, D. A., and Lovley, D. R., 1996, Measuring rates of biodegradation in a petroleum hydrocarbon-contaminated aquifer, Ground Water, 34: 691–698.

    Article  CAS  Google Scholar 

  • Christensen, T., H., Kjeldsen, P., Albrechtsen, H.-J., and Heron, G., 1994, Attenuation of pollutants in landfill leachate polluted aquifers, Critical Reviews in Environ. Sci. Technol. 24: 119–202.

    Article  CAS  Google Scholar 

  • Coates, J. D., Anderson, R. T., Woodward, J. C., Phillips, E. J. P., and Lovley, D. R., 1996a, Anaerobic hydrocarbon degradation in petroleum contaminated harbor sediments under sulfate-and artificially imposed iron-reducing conditions, Environ. Sci. Technol., 30: 2784–2789.

    Article  CAS  Google Scholar 

  • Coates, J. D., Lonergan, D. J., Jenter, H., and Lovley, D. R., 19966, Isolation of Geobacter species from a variety of sedimentary environments, Appl. Environ. Microbiol. 62: 1531–1536.

    Google Scholar 

  • Cole, J., 1993, Controlling environmental nitrogen through microbial metabolism, Trends Biotechnol. 11: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C., and Pye, K., 1993, Reduction of Fe(III) in sediments by sulphate-reducing bacteria, Nature 361: 436–438.

    Article  CAS  Google Scholar 

  • Colwell, F. S., 1989, Microbiological comparison of surface soil and unsaturated subsurface soil from a semiarid high desert, Appl. Environ. Microbiol. 55: 2420–2423.

    PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., Seitz, H., and Conrad, R., 1988, The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Arch. Microbiol. 149: 350–357.

    Article  CAS  Google Scholar 

  • Corseuil, H. X., and Weber, W. J. J., 1994, Potential biomass limitations on rates of degradation of monoaromatic hydrocarbons by indigenous microbes in subsurface soils, Wat. Res. 28: 1415–1423.

    Article  CAS  Google Scholar 

  • Criddle, C. S., DeWitt, J. T., Grbic-Galic, D., and McCarty, P., 1990, Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions, Appl. Environ. Microbiol. 56: 3240–3246.

    PubMed  CAS  Google Scholar 

  • Crocetti, C. A., Head, C. L., and Ricciardelli, A. J., 1992, Aeration-enhanced bioremediation of oil-contaminated soils: A laboratory treatability study, in: Proceedings of the Conference entitled Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, Houston, pp. 427–440.

    Google Scholar 

  • Dagley, S., 1971, Catabolism of aromatic compounds by microorganisms, Adv. Microb. Physiol. 6: 1–46.

    Article  PubMed  CAS  Google Scholar 

  • Dahab, M. F., 1993, Comparison and evaluation of in-situ bio-denitrification systems for nitrate reduction in groundwater, Wat. Sci. Tech. 28: 359–368.

    CAS  Google Scholar 

  • Davis, J. W., Klier, N. J., and Carpenter, C. L., 1994, Natural biological attenuation of benzene in ground water beneath a manufacturing facility, Ground Water 32: 215–226.

    Article  CAS  Google Scholar 

  • De Bruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B., 1992, Complete biological reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol. 58: 1996–2000.

    PubMed  Google Scholar 

  • Dobbins, D. C., Aelion, C. M., and Pfaender, F., 1992, Subsurface terrestial microbial ecology and biodegradation of organic chemicals: a review, Critical Reviews in Environmental Control 22: 67–136.

    Article  CAS  Google Scholar 

  • Doffing, J., Zeyer, J., Binder-Eicher, P., and Schwarzenbach, R. P., 1990, Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen, Arch Microbiol. 134: 336–341.

    Google Scholar 

  • Durant, N. D., Wilson, L. P., and Bouwer, E. J., 1995, Microcosm studies of subsurface PAHdegrading bacteria from a former manufactured gas plant, J. Contam. Hydro!. 17: 213–237.

    Article  CAS  Google Scholar 

  • Edwards, E. A., and Grbic-Galic, D., 1992, Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions, Appl. Environ. Microbio!. 58: 2663–2666.

    CAS  Google Scholar 

  • Edwards, E. A., and Grbic-Galic, D., 1994, Anaerobic degradation of toluene and o-xylene by a methanogenic consortium, Appl. Environ. Microbiol. 60: 313–322.

    PubMed  CAS  Google Scholar 

  • Edwards, E. A., Wills, L. E., Reinhard, M., and Grbic-Galic, D., 1992, Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions, Appl. Environ. Microbial. 58: 794–800.

    CAS  Google Scholar 

  • Egli, C., Tschan, T., Scholtz, R., Cook, A. M., and Leisinger, T., 1988, Transforamtion of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii, Appl. Environ. Microbiol. 54: 2819–2824.

    PubMed  CAS  Google Scholar 

  • Egli, C., Stromeyer, S., Cook, A. M., and Leisinger, T., 1990, Transformation of tetra-and trichloromethane to CO, by an anaerobic bacteria is a non-enzymic process, FEMS Microbiol. Lett. 68: 207–212.

    Article  CAS  Google Scholar 

  • Ellis, B., Balba, M. T., and Theile, P., 1990, Bioremediation of oil contaminated land, Environ. Technol. 11: 443–455.

    Article  CAS  Google Scholar 

  • Ellis, B., Harold, P., and Kronberg, H., 1991, Bioremediation of a creosote contaminated site, Environ. Technol. 12: 447–459.

    Article  CAS  Google Scholar 

  • Evans, P. J., Mang, D. T., and Young, L. Y., 1991a, Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures, Appl. Environ. Microbiol. 57: 450–454.

    PubMed  CAS  Google Scholar 

  • Evans, P. J., Mang, D. T., Kim, K. S., and Young, L. Y., 1991b, Anaerobic degradation of toluene by a denitrifying bacterium, Appl. Environ. Microbiol. 57: 1139–1145.

    PubMed  CAS  Google Scholar 

  • Federle, T. W., Dobbins, D. C., and Thornton-Manning, J. R., 1986, Microbial biomass, activity, and community structure in subsurface soils, Ground Water 24: 365–374.

    Article  CAS  Google Scholar 

  • Federle, T. W., Ventullo, R. M., and White, D. C., 1990, Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface, Microbial Ecology 20: 297–313.

    Article  CAS  Google Scholar 

  • Fish, W., 1993, Sub-surface redox chemistry: a comparison of equilibrium and reaction-based approaches, in: Metals in Groundwater (H. E. Allen, E. M.Perdue and D. S. Brown, eds.), Lewis Publishers, Ann Arbor, MI, pp. 73–101.

    Google Scholar 

  • Flathman, P. E., Jerger, D. E., and Exner, J. H., 1994, Bioremediation Field Experience, CRC Press, Boca Raton.

    Google Scholar 

  • Fleming, J. T., Sanseverino, J., and Sayler, G. S., 1993, Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites, Environ. Sci. Technol. 27: 1068–1074.

    Article  CAS  Google Scholar 

  • Fliermans, C. B., Phelps, T. J., Ringelberg, D., Mikell, A. T., and White, D. C., 1988, Mineralization of trichloroethylene by heterotrophic enrichment cultures, Appl. Environ. Microbiol. 54: 1709–1714.

    PubMed  CAS  Google Scholar 

  • Flyvbjerg, J., Arvin, E., Jensen, B. K., and Olsen, S. K., 1993, Microbial degradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater under nitrate-reducing conditions, J. Contam. Hydro(. 12: 133–150.

    Article  CAS  Google Scholar 

  • Fogel, M. M., Taddeo, A. R.. and Fogel, S., 1986, Biodegradation of chlorinated ethenes by a methane utilizing mixed culture, Appl. Environ. Ivlicrobiol. 51: 720–724.

    CAS  Google Scholar 

  • Fontes, D. E., Mills, A. L., Hornberger, G. M., and Herman, J. S., 1991, Physical and chemical factors influencing transport of microorganisms through porous media, Appt Environ. Microbiol. 57: 2473–2481.

    CAS  Google Scholar 

  • Francis, A. J., Slater, J. M., and Dodge, C. J., 1989, Denitrification in deep subsurface sediments, Geomicrobiol. J. 7: 103–116.

    Article  CAS  Google Scholar 

  • Francy, D. S., Thomas, J. M., Raymond, R. L., and Ward, C. H., 1991, Emulsification of hydrocarbons by subsurface bacteria, J. Indus. Microbiol. 8: 237–246.

    Article  CAS  Google Scholar 

  • Frederickson, J. K., and Hicks, R. J., 1987, Probing reveals many microbes beneath Earth’s surface, ASM News 53: 78–79.

    Google Scholar 

  • Frederickson, J. K., Garland, T. R., Hicks, R. J., Thomas, J. M., Li, S. W., and McFadden, K. M., 1989, Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties, Geomicrobiol. J. 7: 53–66.

    Article  Google Scholar 

  • Frederickson, J. K., Brockman, F. J., Workman, D. J., Li, S. W., and Stevens, T. 0., 1991, Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl. Environ. Microbiol. 57: 796–803.

    Google Scholar 

  • Freedman, D. L., and Gossett, J. M., 1989, Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions, Appl. Environ. Microbio!., 55: 2144–2151.

    CAS  Google Scholar 

  • Fries, M. R., Zhou, J., Chee-Sanford, J., and Tiedje, J. M., 1994, Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats, Appl. Environ. Microbiol. 60: 2802–2810.

    PubMed  CAS  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta. 43: 1075–1090.

    Article  CAS  Google Scholar 

  • Fu, G., Kan, A. T., and Tomson, M., 1994, Adsorption and hysteresis of PAHs in surface sediment, Environ. Toxicol. Chem. 13: 1559–1567.

    Article  CAS  Google Scholar 

  • Gadd, G. M., 1988, Accumulation of metals by microorganisms and algae, Biotechnology 40: 403–433.

    Google Scholar 

  • Galli, R., and McCarty, P. L., 1989a, Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp., Appl. Environ. Microbio!. 55: 837–844.

    CAS  Google Scholar 

  • Galli, R., and McCarty, P. L., 19896, Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB, Appl. Environ. Microbiol. 55: 845–851.

    Google Scholar 

  • Gannon, J., Tan, Y., Baveye, P., and Alexander, M., 1991, Effect of sodium chloride on transport of bacteria in a saturated aquifer material, Appl. Environ. Microbiol. 57: 2497–2501.

    PubMed  CAS  Google Scholar 

  • Gayle, B. P., Boardman, G. E., Sherrard, J. H., and Benoit, R. E., 1989, Biological denitrification of water, J. Environ. Engineer. 115: 930–943.

    Article  Google Scholar 

  • Ghiorse, W. C., and Balkwill, D. L., 1983, Enumeration and morphological characterization of bacteria indigenous to subsurface environments, Dev. Ind. Microbiol. 24: 213–224.

    Google Scholar 

  • Ghiorse, W. C., and Wilson, J. T., 1988, Microbial ecology of the terrestial subsurface, Adv. Appl. Microbiol. 33: 107–172.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, D. T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, in: Microbial Degradation of Organic Compounds ( D. T. Gibson, ed.), Marcel Dekker, New York, pp. 181–252.

    Google Scholar 

  • Gibson, S. A.. and Sewell, G. W., 1992, Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols, Appl. Environ. Microbial. 58: 1392–1393.

    CAS  Google Scholar 

  • Gillham, R. W., Starr, R. C., and Miller, D. J., 1990, A device for in situ determination of geochemical transport parameters 2. biochemical reactions, Ground Water 28: 858–862.

    Article  CAS  Google Scholar 

  • Girvin, D. C., Gassman, P. L., and Bolton, H., Jr., 1993, Adsorption of aqueous cobalt ethylenediaminetetraacetate by ALO,: effects of oxidation state, ionic strength and sorbent concentration, Soil Sci. Soc. Am. J. 57: 47.

    Article  CAS  Google Scholar 

  • Goldstein, R. A., Olson, B. H., and Porcella, D. B., 1988, Conceptual model of genetic regulation of mercury biogeochemical cycling, Environ. Technol. Let. 9: 957–964.

    Article  CAS  Google Scholar 

  • Gounot, A.-M., 1994, Microbial oxidation and reduction of manganese: consequences in groundwater applications, FEMS Microbio!. Rev. 14: 339–350.

    Article  CAS  Google Scholar 

  • Grant, D. J. W., and Al-Najjar, T. R., 1976, Degradation of quinoline by a soil bacterium, Microbios 15: 177–189.

    PubMed  CAS  Google Scholar 

  • Grbic-Galic, D., and Vogel, T., 1987, Transformation of toluene and benzene by mixed methanogenic cultures, Appl. Environ. Microbio!. 53: 254–260.

    CAS  Google Scholar 

  • Grosser, R. J., Warshawsky, D., and Vestal, J. R., 1991, Indigenous and enhanced mineralization of pyrene, benzolalpyrene, and carbazole in soils, Appl. Environ. Microbiol. 57: 3462–3469.

    PubMed  CAS  Google Scholar 

  • Gunther, K., Schlosser, D., and Fritsche, W., 1995, Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. J. Basic Microbial. 35: 83–92.

    Article  CAS  Google Scholar 

  • Haag, F., Reinhard, M., and McCarty, P. L., 1991, Degradation of toluene and p-xylene in anaerobic microcosms: evidence for sulfate as a terminal electron acceptor, Environ. Toxicol. Chem. 10: 1379–1389.

    CAS  Google Scholar 

  • Hamon, M., and Fustec, E., 1991, Laboratory and field study of an in situ groundwater denitrification reactor, J. Wat. Pollut. Control Fed. 63: 942–949.

    CAS  Google Scholar 

  • Haner, A., Hohener, P., and Zeyer, J., 1995, Degradation of p-xylene by a denitrifying enrichment culture, Appl. Environ. Microbiol. 61: 3185–3188.

    PubMed  CAS  Google Scholar 

  • Hardman, D. J., 1991, Biotransformation of halogenated compounds, Critical Reviews in Biotechnology 11: 1–40.

    Article  PubMed  CAS  Google Scholar 

  • Hardoyo, J. K., and Ohtake, H., 1991, Effects of heavy metal cations on chromate reduction by Enterobacter cloacae strain HOI, J. Gen. Appl. Microbiol. 37: 519–522.

    Article  CAS  Google Scholar 

  • Harvey, R. W., and George, L. H., 1987, Growth determinations for unattached bacteria in a contaminated aquifer, Appl. Environ. Microbiol. 53: 2992–2996.

    PubMed  CAS  Google Scholar 

  • Harvey, R. W., Smith, R. L., and George, L., 1984, Effect of organic contamination upon the microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer, Appl. Environ. Microbiol. 48: 1197–1202.

    PubMed  CAS  Google Scholar 

  • Harvey, R. W., Kinner, N. E., Bunn, A., MacDonald, D., and Metge, D., 1995, Transport behavior of groundwater protozoa and protozoan-sized microspheres in sandy aquifer sediments, Appl. Environ. Microbiol. 61: 209–217.

    PubMed  CAS  Google Scholar 

  • Heitkamp, M. A., Freeman, J. P., and Cerniglia, C. E., 1987, Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and charcterization of metabolites, Appl. Environ. Microbiol. 53: 129–136.

    PubMed  CAS  Google Scholar 

  • Henry, S. M., and Grbic-Galic, D., 1991a, Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer, Appl. Environ. Microbiol. 57: 236–244.

    PubMed  CAS  Google Scholar 

  • Henry, S. M., and Grbic-Galic, D., 1991b, Inhibition of trichloroethylene oxidation by the transformation intermediate carbon monoxide, Appl. Environ. Microbiol. 57: 1770–1776.

    PubMed  CAS  Google Scholar 

  • Herbes, S. E., and Schwall, L. R., 1978, Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments, Appl. Environ. Microbiol. 35: 306–316.

    PubMed  CAS  Google Scholar 

  • Hicks, R. J., and Frederickson, J. K., 1989, Aerobic metabolic potential of microbial populations indigenous to deep subsurface environments, Geomicrobiol. J. 7: 67–77.

    Article  Google Scholar 

  • Hirsch, P., 1992, Microbiology, in: Progress in Hydrogeochemistry ( G. Matthess, F.Frimmel, P. Hirsch, H. D. Schulz, and H.-E. Usdowski, eds.), Springer-Verlag, New York, pp. 308–311.

    Chapter  Google Scholar 

  • Hirsch, P., and Rades-Rohkohl, E., 1983, Microbial diversity in a groundwater aquifer in northern Germany, Dev. Ind. Microbiol. 24: 183–200.

    Google Scholar 

  • Hirsch, P., and Rades-Rohkohl, E., 1988, Some special problems in the determination of viable counts of groundwater microorganisms, Microbial Ecology 16: 99–113.

    Article  Google Scholar 

  • Hoeppel, R. E., and Hinchee, R. E., 1993, Enhanced biodegradation for on-site remediation of contaminated soils and groundwater, in: Hazardous Waste Site Soil Remediation ( J. D. Wilson, and N. A. Clarke, eds.), Marcel Dekker, New York, pp. 311–431.

    Google Scholar 

  • Holliger, C., and Schraa, G., 1994, Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria, FEMS Microbiol. Rev. 15: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Holliger, C., and Schumacher, W., 1994, Reductive dehalogenation as a respiratory process, Antoine van Leeuwenhoek 66: 239–246.

    Article  CAS  Google Scholar 

  • Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1993, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ. Microbiol. 59: 2991–2997.

    PubMed  CAS  Google Scholar 

  • Holm, P. E., Nielsen, P. H., and Christensen, T. H., 1991, Aerobic groundwater and groundwater sediment degradation potential for xenobiotic compounds measured in situ, in: In Situ Bio-reclamation, ( E. R. Hinchee, and F. R. Olfenbuttel, eds.), Butterworth-Heinemann, Stoneham, MA, pp. 413–419.

    Google Scholar 

  • Holm, P. E., Nielson, P. H., Albrechtson, H.-J., and Christensen, T. H., 1992, Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer, Appl. Environ. Microbiol. 58: 3020–3026.

    PubMed  CAS  Google Scholar 

  • Hopkins, G. D., and McCarty, P. L., 1995, Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates, Environ. Sci. Technol. 29: 1628–1637.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, G. D., Munakata, J., Semprini, L., and McCarty, P. L., 1993a, Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms, Environ. Sci. Technol. 27: 2542–2547.

    Article  CAS  Google Scholar 

  • Hopkins, G. D., Semprini, L., and McCarty, P. L., 19936, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Appl. Environ. Microbiol. 59: 2277–2285.

    Google Scholar 

  • Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S., and Kawai, K., 1987, Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1, Agric. Biol. Chem. 51: 2417–2420.

    Article  CAS  Google Scholar 

  • Hou, C. T., Patel, R., Laskin, A. I., Bamabe, N., Barist, I., 1983, Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria, Appl. Environ. Microbiol. 46: 171–177.

    PubMed  CAS  Google Scholar 

  • Huling, S. G., Bledsoe, B. E., and White, M. V., 1990, Enhanced bioremediation using hydrogen peroxide as a supplemental source of oxygen: a laboratory and field study, US Environmental Protection Agency Report, EPA/600/52–90/006

    Google Scholar 

  • Hutchins, S. R., 1991, Optimizing BTEX biodegradation under denitrifying conditions, Environ. Toxicol. Chem. 10: 1437–1448.

    Article  CAS  Google Scholar 

  • Hutchins, S. R., Sewell, G. W., Kovacs, D. A., and Smith, G. A., 1991, Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions, Environ. Sci. Technol. 25: 68–76.

    Article  CAS  Google Scholar 

  • Hyman, M. R., Russel, S. A., Ely, R. L., Williamson, K. J., and Arp, D. J., 1995, Inhibition, inactivation and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea, Appl. Environ. Microbiol. 61: 1480–1487.

    PubMed  CAS  Google Scholar 

  • Ishibashi, Y., Cervantes, C., and Silver, S., 1990, Chromium reduction in Pseudomonas putida, Appl. Environ. Microbiol. 56: 2268–2270.

    PubMed  CAS  Google Scholar 

  • Jackson, R. E., and Patterson, R. J., 1982, Interpretation of pH and Eh trends in a fluvial-sand aquifer system, Wat. Resour. Res. 18: 1255–1268.

    Article  CAS  Google Scholar 

  • Jain, R. K., Sayler, G. S., Wilson, J. T., Houston, L., and Pacia, D., 1987, Maintenance and stability of introduced genotypes in groundwater aquifer material, Appl. Environ. Microbiol. 53: 996–1002.

    PubMed  CAS  Google Scholar 

  • Janda, V., Rudovsky, J., Wanner, J., and Marha, K., 1988, In situ denitrification of drinking water, Wat. Sci. Tech. 20: 215–219.

    CAS  Google Scholar 

  • Janssen, D. B., Scheper, A., Dijkhuizen, L., and Witholt, B., 1985, Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ 10, Appl. Environ. Microbiol., 49: 673–677.

    PubMed  CAS  Google Scholar 

  • Jaudon, P., Massiani, J. G., Rey, J., and Vacelet, E., 1989, Groundwater pollution by manganese. manganese speciation: application to the selection and discussion of an in situ groundwater treatment, Sci. Tot. Environ. 84: 169–183.

    Article  CAS  Google Scholar 

  • Jenkins, K. B., Michelsen, D. L., and Novak, J. T., 1993, Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column, Biotechnol. Prog. 9: 394–400.

    Article  CAS  Google Scholar 

  • Jensen, B. K., 1989, ATP-related specific heterotrophic activity in petroleum contaminated and uncontaminated groundwaters, Can. J. Microbiol. 35: 814–818.

    Article  CAS  Google Scholar 

  • Ka, J. O., Holben, W. E., and Tiedje, J. M., 1994a, Analysis of competition in soil among 2,4- dichlorophenoxyacetic acid-degrading bacteria, Appl. Environ. Microbiol. 60: 1121–1128.

    PubMed  CAS  Google Scholar 

  • Ka, J. O., Holben, W. E., and Tiedje, J. M., 1994b, Use of gene probes to aid in the recovery and identification of functionally dominant 2,4-dichlorophenoxyacetic acid-degrading populations in soil, Appl. Environ. Microbiol. 60: 1116–1120.

    PubMed  CAS  Google Scholar 

  • Ka, J. O., Holben, W. E., and Tiedji, J. M., 1994c, Genetic and phenotypic diversity of 2,4dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils, Appl. Environ. Microbio!. 60: 1106–1115.

    CAS  Google Scholar 

  • Kaiser, J.-P., and Bollag, J.-M., 1992, Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives, Soil Biology and Biochemistry, 24: 351–357.

    Article  CAS  Google Scholar 

  • Kampfer, P., Steiof, M., and Dott, W., 1991, Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria, Microb. Ecol. 21: 227–251.

    Article  Google Scholar 

  • Kampfer, P., Steiof, M., Becker, P. M., and Dott, W., 1993, Characterization of chemoheterotrophic bacteria associated with the in situ bioremediation of a waste-oil contaminated site, Microb. Ecol. 26: 161–188.

    Article  Google Scholar 

  • Keenan, J. E., Strand, S. E., and Stensel, H. D., 1994, Degradation kinetics of chlorinated solvents by a propane-oxidizing culture, in Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds, ( R. E. Hinchee, A. Leeson, L. Semprini, and S.K. Ong, eds., Lewis Publishers, Boca Raton, pp. 1–13.

    Google Scholar 

  • King, R., Barry, Long, G. M., and Sheldon, J. K., 1992, Practical Environmental Bioremediation, CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Kishi, H., Kogure, N., and Hashimoto, Y., 1990, Contribution of soil constituents in adsorption coefficient of aromatic compounds, halogenated alicyclic and aromatic compounds to soil, Chemosphere 21: 867–876.

    Article  CAS  Google Scholar 

  • Kitts, C. L., Cunningham, D. P., and Unkefer, P. J., 1994, Isolation of three hexahydro-1,3,5trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil, Appl. Environ. Microbiol. 60: 4608–4711.

    PubMed  CAS  Google Scholar 

  • Klecka, G. M., Davis, J. W., Gray, D. R., and Madsen, S. S., 1990, Natural bioremediation of organic contaminants in ground water: cliffs-dow superfund site, Ground Water 28: 534–543.

    Article  CAS  Google Scholar 

  • Koh, S.-C., Bowman, J. P., and Sayler, G. S., 1993, Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph Methylomonas methanica 68–1, Appl. Environ. Microbio!. 59: 960–967.

    CAS  Google Scholar 

  • Kolbel-Boelke, J., Anders, E.-M., and Nehrkom, A., 1988b, Microbial communities in the saturated groundwater environment II: diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities, Microbial. Ecol. 16: 31–48.

    Article  Google Scholar 

  • Kolbel-Boelke, J., Teinken, B., and Nehrkom, A., 1988a, Microbial communities in the saturated groundwater environment I: methods of isolation and characterization of heterotrophic bacteria, Microbial. Ecol. 16: 17–29.

    Article  Google Scholar 

  • Konopka, A., 1993, Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines, FEMS Microbiology Letters, 111: 93–100.

    Article  CAS  Google Scholar 

  • Korom, S. F., 1992, Natural denitrification in the saturated zone: a review, Wat. Resour. Res. 28: 1657–1668.

    Article  CAS  Google Scholar 

  • Korte, N., 1991, Naturally occurring arsenic in groundwaters of the midwestern United States, Environ. Geol. Water. Sci. 18: 137–141.

    Article  CAS  Google Scholar 

  • Krumme, M. L., Timmis, K. N., and Dwyer, D. F., 1993, Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PRI in aquifer microcosms, Appl. Environ. Microbio!. 59: 2746–2749.

    CAS  Google Scholar 

  • Krumme, M. L., Smith, R. L., Egestorff, J., Thiem, S. M., Tiedje, J. M., Timmis, K. N.and Dwyer, D. F., 1994, Behavior of pollutant-degrading microorganisms in aquifers: predictions for genetically engineered organisms, Environ. Sci. Technol. 28: 1134–1138.

    CAS  Google Scholar 

  • Kuhn, E. P., and Sutlita, J. M., 1989, Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater—a review, in Reactions and Movements of Organic Chemicals in Soils, ( B. L. Sawhney, and K. Brown, eds.), Soil Science Society of America and American Society of Agronomy, Madison, WI., pp. 111–180.

    Google Scholar 

  • Kuhn, E. P., Colberg, P. J., Schnoor, J. L., Wanner, O., Zehnder, A. J. B., and Schwarzenbach, R. P., 1985, Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies, Environ. Sci. Technol. 19: 961–968.

    Article  CAS  Google Scholar 

  • Kuhn, E. P., Zeyer, J., Eicher, P., and Schwarzenbach, R. P., 1988, Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns, Appl. Environ. Microhiol. 54: 490–496.

    CAS  Google Scholar 

  • Kuznetsov, S. I., lvanov, M. V., and Lyalikova, N. N., 1963, Introduction to Geological Microbiology, McGraw-Hill, New York.

    Google Scholar 

  • Laverman, A. M., Blum, J., Switzer, Schaeffer, J. K., Phillips, E. J. P.. Lovley, D. R., and Oremland, R. S., 1995, Growth of SES-3 with arsenate and other diverse electron acceptors, Appl. Environ. Microhiol. 61: 3556–3561.

    CAS  Google Scholar 

  • Leduc, R., Samson, R., Al-Bashir, B.. Al-Hawari, J., and Cseh, T., 1992, Biotic and abiotic disappearance of four PAH compounds from flooded soil under various redox conditions, Wat. Sci. Tech. 26: 51–60.

    CAS  Google Scholar 

  • Lee, M. D., Thomas, J. M., Borden, R. C., Bedient, P. B., Ward, C. H., and Wilson, J. T., 1988, Biorestoration of aquifers contaminated with organic compounds, CRC Critical Reviews in Environmental Control 18: 29–89.

    Article  CAS  Google Scholar 

  • Lee, M. I.. Wilson, J. T., and Ward, C. H., 1983. Microbial degradation of selected aromatics in a harzardous waste site, Der. Ind. Microbiol. 44: 557–565.

    Google Scholar 

  • Lee, W. E.. and Borden, R. C., 1988, Anaerobic biotransformation of hydrocarbons in the subsurface: field observations, EOS 69: 368.

    Article  Google Scholar 

  • Lewis, T. A., and Crawford, R. L.. 1993. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC, Appl. Environ. Microbiol. 59: 1635–1641.

    PubMed  CAS  Google Scholar 

  • Little, C. D., Palumbo, A. V., Herbes, S. E., Lidstrom, M. E., Tyndall, R. L., and Gilmer, P. J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microhiol. 54: 951–956.

    CAS  Google Scholar 

  • Lloyd-Jones, G., and Trudgill, P. W., 1989, The degradation of alicyclic hydrocarbons by a microbial consortium, International Biodeterioration, 25: 197–206.

    Article  CAS  Google Scholar 

  • Long, R. H. B., Benson, S. M., Tokunaga, T. K., and Yee, A., 1990, Selenium immobilization in a pond sediment at Kesterson Reservior, J. Environ. Qual. 19: 302–311.

    Article  CAS  Google Scholar 

  • Lovley, D. R., 1985, Minimum threshold for hydrogen metabolism in methanogenic bacteria, Appl. Environ. Microhiol. 49: 1530–1531.

    CAS  Google Scholar 

  • Lovley, D. R., 1991, Dissimilatory Fe(111) and Mn(IV) reduction, Microhiol. Rev. 55: 259–287.

    CAS  Google Scholar 

  • Lovley, D. R., 1993, Dissimilatory metal reduction, Annu. Rev. Microhiol. 47: 263–90.

    Article  CAS  Google Scholar 

  • Lovley, D. R., 1995, Microbial reduction of iron, manganese, and other metals, Adv. Agron. 54: 175–231.

    Article  CAS  Google Scholar 

  • Lovley, D. R., 1997, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers, J. Industr. Microbiol. 18: 75–81.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Chapelle, F. H., 1995a, Deep subsurface microbial processes, Rev. Geophys. 33: 365–381.

    Article  Google Scholar 

  • Lovley, D. R., and Chapelle, F. H., 1997, A modeling approach to elucidating the distribution and rates of microbially catalyzed redox reactions in anoxic groundwater, in: Mathematical Models in Microbial Ecology,(J. A. Robinson, ed.), Chapman and Hall, New York, (in press).

    Google Scholar 

  • Lovley, D. R., and Goodwin, S., 1988, Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta. 52: 2993–3003.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Klug, M. J., 1986, Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim. Acta. 50: 11–18.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Lonergan, D. J., 1990, Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-I5, Appl. Environ. Microbiol. 56: 1858–1864.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1987, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol. 53: 2636–2641.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1992a, Bioremediation of uranium contamination with enzymatic uranium reduction, Environ. Sci. Technol. 26: 2228–2234.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1992b, Reduction of uranium by Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 58: 850–856.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1994a, Novel processes for anoxic sulfate production from elemental sulfur by sulfate-reducing bacteria, Appl. Environ. Microbiol 60: 2394–2399.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1994b, Reduction of chromate by Desulfovibrio vulgaris (Hildenborough) and its cj cytochrome, Appl. Environ. Microbiol. 60: 726–728.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Woodward, J. C., 1992, Consumption of CFC-l1 and CF-12 by anaerobic sediments and soils, Environ. Sci. Technol. 26: 925–929.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Woodward, J. C., 1996, Mechanism for chelator stimulation of microbial Fe(III) oxide reduction, Chem. Geol., 132: 19–24.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Dwyer, D. F., and Klug. M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl. Environ. Microbiol. 43: 1373–1379.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., 1989a, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339: 297–299.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J., 1989b, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol. 55: 700–706.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R., 1991, Microbial reduction of uranium, Nature 350: 413–416.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Roden, E. E., Phillips, E. J. P., and Woodward, J. C., 1993a, Enzymatic iron and uranium reduction by sulfate-reducing bacteria, Marine Geol. 113: 41–53.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Widman, P. K., Woodward, J. C., and Phillips, E. J. P., 1993b, Reduction of uranium by cytochrome c; of Desulfovibrio vulgaris, Appl. Environ. Microbiol. 59: 3572–3576.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Chapelle, F. H., and Woodward, J. C., 1994a, Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic groundwater, Environ. Sci. Technol. 28: 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., Woodward, J. C., and Chapelle, F. H., 1994b, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature 370: 128–131.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., Coates, J. D., Woodward, J. C., and Phillips, E. J. P., 1995, Benzene oxidation coupled to sulfate reduction, Appl. Environ. Microbiol. 61: 953–958.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., and Woodward, J. C., I996a, Humic substances as electron acceptors for microbial respiration, Nature, 382: 445–448.

    Google Scholar 

  • Lovley, D. R., Woodward, J. C., and Chapelle, F. H., 1996b, Rapid anaerobic benzene oxidation with a variety of chelated Fe(IIl) forms, Appl. Environ. Microbiol. 62: 288–291.

    PubMed  CAS  Google Scholar 

  • Luthy, R. G., Dzombak, D. A., Peters, C. A., Roy, S. B., Ramaswami, A., Nakles, D. V., and Nott, B. R., 1994, Remediating tar-contaminated soils at manufactured gas plant sites, Environ. Sci. Technol. 28: 266A - 276A.

    Article  CAS  Google Scholar 

  • Lyngkilde, J., and Christensen, T. H., 1992a, Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10: 291–307.

    Article  CAS  Google Scholar 

  • Lyngkilde, J., and Christensen, T., H., 1992b, Redox zones of a landfill leachate pollution plume (Vejen, Denmark), J. Contam. Hydrol. 10: 273–289.

    Article  CAS  Google Scholar 

  • Macaskie, L. E., 1991, The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams, Crit. Rev. in Biotech. 11:41–112.

    Google Scholar 

  • MacIntyre, W., G., Boggs, M., Antworth, C., P., and Stauffer, T., B., 1993, Degradation kinetics of aromatic organic solutes introduced into a heterogenous aquifer, Water Resources Research 20: 4045–4051.

    Article  Google Scholar 

  • MacLeod, F. A., Lappin-Scott, H. M., and Costerton, J. W., 1988, Plugging of a model rock system by using starved bacteria, Appl. Environ. Microbiol. 54: 1365–1372.

    PubMed  CAS  Google Scholar 

  • Madsen, E. L., 1991, Determining in situ biodegradation, Environ. Sci. Technol. 25: 1663–1673.

    Article  Google Scholar 

  • Madsen, E. L., 1995, Impacts of agricultural practices on subsurface microbial ecology, in: Advances in Agronomy, 54 ( D. L. Sparks, ed.), Academic Press, San Diego, pp. 1–67.

    Google Scholar 

  • Madsen, E. L., and Ghiorse, W. C., 1993, Groundwater microbiology: subsurface ecosystem processes, in: Aquatic Microbiology, An Ecological Approach ( T. E. Ford, ed.), Blackwell Scientific, Boston, pp. 167–213.

    Google Scholar 

  • Madsen, E. L., Sinclair, J. L., and Ghiorse, W. C., 1991, In situ biodegradation: microbiological patterns in a contaminated aquifer, Science 252: 830–833.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, E. L., Winding, A., Malachowsky, K., Thomas, C. T., and Ghiorse, W. C., 1992, Contrasts between subsurface microbial communities and their metabolic adaptation to poly-cyclic aromatic hydrocarbons at a forested and an urban coal-tar site, Microb. Ecol. 24: 199–213.

    Article  CAS  Google Scholar 

  • Major, D. W., Mayfield, C. 1., and Barker, J. F., 1988, Biotransformation of benzene by denitrification in aquifer sand, Ground Water 26: 8–14.

    Article  CAS  Google Scholar 

  • Mariotti, A. A., Landreau, A., and Simon, B., 1988, 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France, Geochim. Cosmochim. Acta 52: 1869–1878.

    Google Scholar 

  • Marxsen, J., 1988, Investigations into the number of respiring bacteria in groundwater from sandy and gravelly deposits, Microb. Ecol. 16: 65–72.

    Article  Google Scholar 

  • Mateju, V., Cizinska, S., Krejci, J., and Janoch, T., 1992, Biological water denitrification-a review, Enzyme Microb. Technol. 14: 170–183.

    Article  CAS  Google Scholar 

  • Matthess, G., 1992, Silicate systems, in: Progress in Hydrogeochemistry, ( G. Matthess, F. Frimmel, P. Hirsch, H. D. Schulz, and H.-E. Usdowski, eds.), Springer-Verlag, New York, pp. 199–201.

    Chapter  Google Scholar 

  • Maymo-Gatell, X., Tandoi, V., Gossett, J. M., and Zinder, S. H., 1995, Characterization of an H2- utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis, Appl. Environ. Microbiol. 61: 3928–3933.

    PubMed  CAS  Google Scholar 

  • McAllister, P. M., and Chiang, C. Y., 1994, A practical approach to evaluating natural attenuation of contaminants in ground water, Ground Wat. Monit. Remed. 14: 56–79.

    Article  Google Scholar 

  • McCarty, P. L., 1972, Energetics of organic matter degradation, in: Water Pollution Microbiology ( R. Mitchell, ed.), John Wiley, New York, pp. 91–118.

    Google Scholar 

  • McCarty, P. L., and Semprini, L., 1994, Ground-water treatment for chlorinated solvents, in: Handbook of Bioremediation ( R D. Norris, R. E. Hirchee, R. Brown, P. L. McCarty, L. Semprimi, J. T. Wilson, D. H. Kampbell, M. Reinhard, E. J. Bouwer, R. C., Borden, T. M. Vogel, J. M. Thomas, C. H. Ward, eds.), Lewis Publishers, Boca Raton, pp. 87–116.

    Google Scholar 

  • McCarty, P. L., Semprini, L., Dolan, M. E., Harmon, T. C., Tiedeman, C., and Gorelick, S. M., 1991, In situ methanogenic bioremediation for contaminated groundwater at St. Joseph, Michigan, in: On-Site Bioreclamation: Processes for Xenobiotic and HydrocarbonTreatment (E. R. Hinchee, and F. R. Olfenbuttel, eds.), Butterworth-Heinemann, Boston, pp. 16–40.

    Google Scholar 

  • McNabb, J. F., and Dunlap, W. J., 1975, Subsurface biological activity in relation to ground-water pollution, Ground Water 13: 33–44.

    Article  Google Scholar 

  • McNabb, W. W, Jr., and Narasimhan, T. N., 1994, Degradation of chlorinated hydrocarbons and groundwater geochemistry: A field study, Environ. Sci. Technol. 28: 769–775.

    Article  Google Scholar 

  • Mercado, A., Libhaber, M., and Soares, M. I. M., 1988, In situ biological groundwater denitrification: concepts and preliminary field tests, Wat. Sci. Tech. 20: 197–209.

    CAS  Google Scholar 

  • Mihelcic, J. R., and Luthy, R. G., 1988a, Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems, Appl. Environ. Microhiol. 54: 1182–1187.

    CAS  Google Scholar 

  • Mihelcic, J. R., and Luthy, R. G., 1988b, Microbial degradation of acenaphthalene and naphthalene under denitrification conditions in soil-water systems, Appl. Environ. Microhiol. 54: 1188–1198.

    CAS  Google Scholar 

  • Millette, D., Barker, J. F., Comeau, Y., Butler, B. J., Frind, E. O., Clement, B., and Samson, R., 1995, Substrate interaction during aerobic biodegradation of creosote-related compounds: a factorial batch experiment, Environ. Sci. Technol. 29: 1944–1952.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A. L., Herman, J. S., Hornberger, G. M., and DeJesus, T. H., 1994, Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand, Appl. Environ. Microbial. 60: 3300–3306.

    CAS  Google Scholar 

  • Mohn, W. W., and Tiedje, J. M., 1992, Microbial reductive dehalogenation, Microhiol. Rev. 14: 482–507.

    Google Scholar 

  • Morgan, P., and Watkinson, R. J., 1989, Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds, FEMS Microbiol. Rev. 63: 277–300.

    Article  CAS  Google Scholar 

  • Morgan, P., and Watkinson, R. J., 1992, Factors limiting the supply and frequency of nutrient and oxygen supplements for the in situ biotreatment of contaminated soil and groundwater, Water Research 26: 73–78.

    Article  CAS  Google Scholar 

  • Morgan, P., Lewis, S. T., and Watkinson, R. J., 1993, Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condenstate-contaminated ground-water, Environ. Poll. 82: 181–190.

    Article  CAS  Google Scholar 

  • Morris, J. T., Whiting, G. J., and Chapelle, F. H., 1988, Potential denitrification rates in deep sediments from the southeastern coastal plain, Environ. Sci. Technol. 22: 332–335.

    Article  Google Scholar 

  • Nelson, M. J. K., Montgomery, S. O., O’Neill, E. J., and Pritchard, P. H., 1986, Aerobic metabo- lism of trichloroethylene by a bacterial isolate, Appl. Environ. Microbial. 52: 383–384.

    CAS  Google Scholar 

  • Nelson, M. J. K., Montgomery, S. O., Mahaffey, W. R., and Pritchard, P. H., 1987, Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway, Appl. Environ. Microbiol. 53: 949–954.

    PubMed  CAS  Google Scholar 

  • Nielson, P. H., and Christensen, T. H., 1994, Variability of biological degradation of aromatic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments, J. Contam. Hydrol. 15: 305–320.

    Article  Google Scholar 

  • Norris, R. D., Hinchee, R. E., Brown, R., McCarty, P. L., Semprini, L., Wilson, J. T., Kampbell, D. H., Reinhard, M., Bouwer, E. J., Borden, R. C., Vogel, T. M., Thomas, J. M., and Ward, C. H., 1994, Handbook of Bioremediation, CRC Press, Boca Raton.

    Google Scholar 

  • Ogunseitan, O. A., and Olson, B. H., 1991, Potential for genetic enhancement of bacterial detoxification of mercury waste in: Proceedings of the Mineral Bioprocessing Conference (R. W. Smith and M. Misra, eds.), The Minerals, Metals and Materials Society, Santa Barbara, pp. 325–337.

    Google Scholar 

  • Oldenhius, R., Oedzes, J. Y., van der Waarde, J. J., and Janssen, D. B., 1991, Kinetics-of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene, Appl. Environ. Microbiol. 57: 7–14.

    Google Scholar 

  • Olson, B. H., Cayless, S. M., Ford, S., and Lester, J. N., 1991, Toxic element contamination and the occurrence of mercury-resistant bacteria in Hg-contaminated soil, sediments, and sludges, Arch. Environ. Contam. Toxicol. 20: 226–233.

    Article  CAS  Google Scholar 

  • Oremland, R. S., 1994, Biogeochemical transformations of selenium in anoxic environments, in: Selenium in the Environment ( W. T. J. Frankenberger and S. N. Benson, eds.), Marcel Dekker, New York, pp. 389–419.

    Google Scholar 

  • Oremland, R. S., Steinberg, N. A., Maest, A. S., Miller, L. G., and Hollibaugh, J. T., 1990, Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments, Environ. Sei. Technol. 24: 1157–1164.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Steinberg, N. A., Presser, T. S., and Miller, L. G., 1991, In situ bacterial selenate reduction in the agricultural drainage systems of western Nevada, Appl. Environ. Microbiol. 57: 615–617.

    PubMed  CAS  Google Scholar 

  • Pardieck, D. L., Bouwer, E. J., and Stone, A. T., 1992, Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A Review, J. Contam. Hvdrol. 9: 221–242.

    Article  CAS  Google Scholar 

  • Parsons, F., Barrio-Lage, G., and Rice, R.. 1985, Biotransformation of chlorinated organic solvents in static microcosms, Environ. Toxicol. Chem., 4: 739–742.

    Article  CAS  Google Scholar 

  • Parsons, F., Wood, P. R., DeMarco, J., 1984, Transformations of tetrachloroethene and trichloroethene in microcosms and groundwater, Am. Water Works, Assoc. 71: 56–59.

    Google Scholar 

  • Patterson, B., M., Pribac, F., Barber, C., Davis, G., B., and Gibbs, R., 1993, Biodegradation and retardation of PCE and BTEX compounds in aquifer material from Western Australia using large-scale columns, J. Contam. Hydro’. 14: 261–278.

    Article  CAS  Google Scholar 

  • Pedersen, K., 1993, The deep subterranean biosphere, Earth-Science Rev. 34: 243–260.

    Article  CAS  Google Scholar 

  • Phelps, T. J., Ringleberg, D., Hedrick, D., Davis, J., Fliermans, C. B., and White, D. C., 1988, Microbial biomass and activities associated with subsurface environments contaminated with chlorinated hydrocarbons, Geomicrobiol. J. 6: 157–170.

    Article  CAS  Google Scholar 

  • Phelps, T. J., Raione, E. G., White, D. C.. and Fliermans, C. B., 1989, Microbial activities in deep subsurface environments, Geomicrobiol. J. 7: 79–91.

    Article  Google Scholar 

  • Podoll, R. T., Irwin, K. C., and Parish, H. J., 1989, Dynamic studies of naphthalene sorption on soil from aqueous solution, Chernosphere 18: 2399–2412.

    CAS  Google Scholar 

  • Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Agron. 24: 29–96.

    Article  CAS  Google Scholar 

  • Portier, R. J., Zoeller, A. L., and Fujisaki, K., 1990, Bioremediation of pesticide-contaminated groundwater, Remediation 1: 41–60.

    Article  Google Scholar 

  • Postma, D., Boesen, C.. Kristiansen, H., and Larsen, F., 1991, Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling, Wat. Resour. Res. 27: 2027–2045.

    Article  CAS  Google Scholar 

  • Rabus, R., and Widdel, F., 1995, Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by a new denitrifying bacteria, Arch. Mirobiol. 163: 96–103.

    CAS  Google Scholar 

  • Rabus, R., Nordhaus, R., Ludwig, W., and Widdel, F., 1993, Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium, Appl. Environ. Microbiol. 59: 1444–1451.

    PubMed  CAS  Google Scholar 

  • Radehaus, P. M., and Schmidt, S. K., 1992, Characterization of a novel Pseudomomas sp. that mineralizes high concentrations of pentachlorophenol, Appl. Environ. Microbial. 58: 2879–2885.

    CAS  Google Scholar 

  • Radosevich, M., and Klein, D. A., 1993, Bacterial enumeration and mercury volatilization in deep subsurface sediment samples, Bull. Environ. Contam. Toxicol. 51: 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Rainwater, K., Mayfield, M. P., Heintz, C., and Claborn, B. J., 1993, Enhanced in situ biodegradation of diesel fuel by cyclic vertical water table movement: preliminary studies, Water Environ. Res. 65: 717–725.

    Article  CAS  Google Scholar 

  • Raymond, R. L., Brown, R. A., Norris, R. D., and O’Neill, E. T., 1986, Stimulation of biooxidation processes in subterranean formations, U.S. Patent 4,588,506 (5–13–86), FMC Corporation, Philadelphia.

    Google Scholar 

  • Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Ann. Rev. Earth Planet. Sci. 11: 269–298.

    Article  CAS  Google Scholar 

  • Regnell, O., 1990, Conversion and partitioning of radio-labelled mercury chloride in aquatic model systems, Can. J. Fish. Aquat. Sci. 47: 548–553.

    Article  CAS  Google Scholar 

  • Ridgway, H. F., Safarik, J., Phipps, D., Carl, P., and Clark, D., 1990, Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer, Appl. Environ. Microbiol. 56: 3565–3575.

    PubMed  CAS  Google Scholar 

  • Rittman, B. E., and McCarty, P. L., 1980, Utilization of dichloromethane by suspended and fixed-film bacteria, Appl. Environ. Microbiol. 39: 1225–1226.

    Google Scholar 

  • Roberts, P. V., Hopkins, G. D., Mackay, D. M., and Semprini, L., 1990, A field evaluation of in-situ biodegradation of chlorinated ethenes: part 1, methodology and field site characterization, Ground Water 28: 591–604.

    Article  CAS  Google Scholar 

  • Rochelle. P. A., Wetherbee, M. K., and Olson, B. H., 1991, Distribution of DNA sequences encoding narrow-and broad-spectrum mercury resistance, Appl. Environ. Microbiol. 57: 1581–1589.

    Google Scholar 

  • Rugge, K., Bjerg, P. L., and Christensen, T. H., 1995, Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill (Grindsted, Denmark, Environ. Sci. Technol. 29: 1395–1400.

    Article  Google Scholar 

  • Salanitro, J. P., 1993, The role of bioattenuation in the management of aromatic hydrocarbon plumes in aquifers, Ground Water Monitoring Review 13: 150–161.

    Article  CAS  Google Scholar 

  • Sayler, G. S., Shields, M. S., Tedford, E. T., Breen, A., Hooper, S. W., Sirotin, K. M., and Davis, J. W., 1985, Application of DNA-DNA colony hybridization to the dectection of catabolic genotypes in environmental samples, Appl. Environ. Microbiol. 49: 1295–1303.

    PubMed  CAS  Google Scholar 

  • Schocher, R. J., Seyfried, B., Vazquez, F., and Zeyer, J., 1991, Anaerobic degradation of toluene by pure cultures of dentrifying bacteria, Arch. Microbiol. 157: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Scholl, M. A., and Harvey, R. W., 1992, Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contâminated sandy aquifer, Environ. Sci. Technol. 26: 1410–1417.

    Article  CAS  Google Scholar 

  • Scholz-Muramatsu, H., Neuman, A., Meßmer, M., Moore, E., and Diekert, G., 1995, Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium, Arch. Microbiol. 163: 48–56.

    Article  CAS  Google Scholar 

  • Schwille, F., 1976, Anthropogenically reduced groundwaters, Hydrol. Sci. Bull. 21: 629–645.

    Article  Google Scholar 

  • Semprini, L., and McCarty, P. L., 1991, Comparison between model simulations and field results of in-situ biorestoration of chlorinated aliphatics: part 1. biostimulation of methanotrophs, Ground Water 29: 365–374.

    Article  CAS  Google Scholar 

  • Semprini, L., and McCarty, P. L., 1992, Comparison between model simulations and field results of in-situ biorestoration of chlorinated aliphatics: part 2. cometabolic transformations, Ground Water 30: 37–44.

    Article  CAS  Google Scholar 

  • Semprini, L., Hopkins, G. D., Roberts, P. V., and McCarty, P. L., 1990, In-situ biotransformation of carbon tetrachloride, 1,1,1-trichloroethane, Freon-11, and Freon-113 under anoxic conditions, EOS, Trans. Amer. Geophys. Union 71: 1324.

    Google Scholar 

  • Semprini, L., Hopkins, G. D., Roberts, P. V., Grbic-Galic, D., and McCarty, P. L., 1991, A field evaluation of in-situ biodegradation of chlorinated ethenes: part 3. studies of competitive inhibition, Ground Water 29: 239–250.

    Article  CAS  Google Scholar 

  • Semprini, L., Hopkins, G. D., McCarty, P. L., and Roberts, P. V., 1992, In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions, Environ. Sci. Technol. 26: 2454–2461.

    Article  CAS  Google Scholar 

  • Sharma, P. K., and McCarty, P. L., 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene, Appl. Environ. Microbiol. 62: 761–765.

    PubMed  CAS  Google Scholar 

  • Sharma, P. K., and McInerney, M. J., 1994, Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous glass bead chambers, Appl. Environ. Microbiol. 60: 1481–1486.

    PubMed  CAS  Google Scholar 

  • Shields, M. S., Montgomery, S. O., Chapman, P. J., Cuskey, S. M., and Pritchard, P. H., 1989, Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4, Appl. Environ. Microbiol. 55: 1624–1629.

    PubMed  CAS  Google Scholar 

  • Silver, S., 1991, Proceedings to the Eighth International Biodeterioration and Biodegradation Symposium (H. Rossmore, ed.), Elsevier, London, pp. 308–339.

    Google Scholar 

  • Sinclair, J. L., and Ghiorse, W. C., 1987, Distribution of protozoa in subsurface sediments of a pristine groundwater site in Oklahoma, Appl. Environ. Microbiol. 53: 1157–1163.

    PubMed  CAS  Google Scholar 

  • Sinclair, J. L., and Ghiorse, W. C., 1989, Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments, Geomicrobiology 7: 15–31.

    Article  Google Scholar 

  • Sinclair, J. L., Randtke, S. J., Denne, J. E., Hathaway, L. R., and Ghiorse, W. C., 1990, Survey of microbial populations in buried-valley aquifer sediments from northeastern Kansas, Ground Water 28: 369–377.

    Article  Google Scholar 

  • Smith, G. A., Nickels, J. S., Kerger, B. D., Davis, J. D., Collins, S. P., Wilson, J. T., McNabb, J. F., and White, D. C., 1986, Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination, Can. J. Microbiol. 32:104— 111.

    Google Scholar 

  • Smith, J. A., Witkowski, P. J., and Chiou, C. T., 1988, Partition of nonionic organic compounds in aquatic systems, Rev. Environ. Contain. Toxicol. 103: 127–151.

    Article  CAS  Google Scholar 

  • Smith, M., R., 1990, The biodegradation of aromatic hydrocarbons by bacteria, Biodegradation 1: 191–206.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. R., Ewing, M., and Ratledge. C., 1991, The interactions of various aromatic substrates degraded by Pseudomomas sp. NCIB 10643: synergistic inhibition of growth by two compounds that serve as growth substrates, Appl. Microbiol. Biotechnol. 34: 536–538.

    Article  CAS  Google Scholar 

  • Smith, R. L., Ceazan, M. L., and Brooks, M. H., 1994, Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for biotransformation of nitrate contamination, Appl. Environ. Microbiol. 60: 1949–1955.

    PubMed  CAS  Google Scholar 

  • Soares, M. I. M., Belkin, S., and Abeliovich, A., 1988, Biological groundwater denitrification: laboratory studies, Wat. Sci. Tech. 20: 189–195.

    CAS  Google Scholar 

  • Sonier, D. N., Duran, N. L., and Smith, G. B., 1994, Dechlorination of trichlorofluoromethane (CFC-1 I) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds, Appl. Environ. Microbiol. 60: 4567–4572.

    PubMed  CAS  Google Scholar 

  • Spain, J. C., Van Veld, P. A., Monti, C. A., Pritchard, P. H., and Cripe, C. R., 1984, Comparison of p-nitrophenol biodegradation in field and laboratory test systems, Appt Environ. Microbol. 48: 944–950.

    CAS  Google Scholar 

  • Spain, J. C., Milligan, J. D., Downey, D. C., and Slaughter, J. K., 1989, Excessive bacterial decomposition of H2O, during enhanced biodegradation, Ground Water 27: 163–167.

    Article  CAS  Google Scholar 

  • Spalding, R. F., and Exnter, M. E., 1993, Occurrence of nitrate in groundwater-a review, J. Environ. Qual. 22: 392–402.

    Article  CAS  Google Scholar 

  • Spalding, R. F., and Parrott, J. D., 1994, Shallow groundwater denitrification, Sci. Tot. Environ. 141: 17–25.

    Article  CAS  Google Scholar 

  • Stanlake, G. J., and Finn, R. K., 1982, Isolation and characterization of a pentachlorophenoldegrading bacterium, Appl. Environ. Microbio!. 44: 1421–1427.

    CAS  Google Scholar 

  • Starr, R. C., and Gillham, R. W., 1993, Denitrification and organic carbon availability in two aquifers, Groundwater 31: 934–947.

    Article  CAS  Google Scholar 

  • Stephen, G. M., and Dalton, H., 1986, The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria, J. Gen. Microbiol. 132: 2453–2462.

    Google Scholar 

  • Stetzenbach, L. D., Kelley, L. M., and Sinclair, N. A., 1986, Isolation, identification, and growth of well-water bacteria, Ground Water 24: 6–10.

    Article  CAS  Google Scholar 

  • Strand, S. E., and Shippert, L., 1986, Oxidation of chloroform in an aerobic soil exposed to natural gas, Appl. Environ. Microbio!. 52: 203–205.

    CAS  Google Scholar 

  • Strand, S. E., Bjelland, M. D., and Stensel, H. D., 1990, Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane-oxidizing bacteria, Research Journal WPCF 62: 124–129.

    CAS  Google Scholar 

  • Stucki, G., Krebser, U., and Leisinger, T., 1983, Bacterial growth on 1,2-dichloroethane, Experientia, 39: 366–371.

    Article  Google Scholar 

  • Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  • Suflita, J. M., Gibson, S. A., and Beeman, R. E., 1988, Anaerobic biotransformation of pollutant chemicals in aquifers, J. Indust. Microbio!. 3: 179–194.

    Article  CAS  Google Scholar 

  • Swindoll, C. M., Aelion, M. C., Dobbins, D. C., Jiang, O., Long, S., and Pfaender, F. K., 1988, Aerobic biodegradation of natural and xenobiotic organic compounds by subsurface microbial communities, Environ. Toxicol. Chem. 7: 291–299.

    Article  CAS  Google Scholar 

  • Tatara, G. M., Dybas, M. J., and Criddle, C. S., 1993, Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC, Appl. Environ. Microbio!. 59: 2126–2131.

    CAS  Google Scholar 

  • Thiem, S. M., Krumme, M. L., Smith, R. L., and Tiedje, J. M., 1994, Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer, Appl. Environ. Microhiol. 60: 1059–1067.

    CAS  Google Scholar 

  • Thierrin, J., Davis, G. B., Barber, C., Patterson, B. M., Pribac, F., Power, T. R., and Lambert, M., 1993, Natural degradation rates of BTEX compounds and naphthalene in a sulphate reducing groundwater environment, Hydro!. Sci. 38: 309–322.

    Article  CAS  Google Scholar 

  • Thomas, J. M., and Ward, C. H., 1989, In situ biorestoration of organic contaminants in the subsurface, Environ. Sci. Tech. 23: 760–766.

    CAS  Google Scholar 

  • Thomas, J. M., Lee, M. D., and Ward, C. H., 1987, Use of ground water in an assessment of biodegradation potential in the subsurface, Environ. Toxicol. Chem. 6: 607–614.

    Article  CAS  Google Scholar 

  • Thomas, J. M., Lee, M. D., Scott, M. J., and Ward, C. H., 1989, Microbial ecology of the subsurface at an abandoned creosote waste site, J. Indus. Microbiol. 4: 109–120.

    Article  Google Scholar 

  • Thomas, J. M., Gordy, V. R., Fiorenza, S., and Ward, C. H., 1990, Biodegradation of BTEX in subsurface materials contaminated with gasoline: Granger, Indiana, Wut. Sci. Tech. 20: 53–62.

    Google Scholar 

  • Thorn, P. M., and Ventullo, R. M., 1988, Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA, Microb. Ecol. 16: 3–16.

    Article  CAS  Google Scholar 

  • Topp, E., Hanson, R. S., Ringelberg, D. B., White, D. C., and Wheatcroft, R., 1993, Isolation and characterization on an n-methylcarbamate insecticide-degrading methylotrophic bacterium, Appl. Environ. Microhiol. 59: 3339–3349.

    CAS  Google Scholar 

  • Trudell, M. R., Gillham, R. W., and Cherry, J. A., 1986. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer, J. Hydro!. 83: 251–268.

    Article  CAS  Google Scholar 

  • Tsien, H.-C., Brusseau, G. A., Hanson, R. S., and Wackett, L. P., 1989, Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b, Appl. Environ. Microbiol. 55: 3155–3161.

    PubMed  CAS  Google Scholar 

  • Van Beelen, P., and Van Keulen, F., 1990, The kinetics of the degradation of chloroform and benzene in anaerobic sediment from the river Rhine, Hydrobiol. Bull. 24: 13–21.

    Article  Google Scholar 

  • Vannelli, T., Logan, M., Arciero, D. M., and Hooper, A. B., 1990. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbio!. 56: 1169–1171.

    CAS  Google Scholar 

  • Vogel, T. M., 1994, Natural bioremediation of chlorinated solvents, in: Handbook of Bioremediation, ( R. D. Norris, R. F. Hinchee, R. Brown, P. L. McCarty, L. Semprini, J. T. Wilson. D. H. Kampbelt, M. Reinhard, E. J. Bouwer, R.C. Borden, T. M. Vogel, J. M. Thomas, C. H. Ward, eds.), Lewis Publishers, Boca Raton, pp. 201–225.

    Google Scholar 

  • Vogel, T. M., and Grbic-Galic, D., 1986, Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation, Appl. Environ. Microbiol. 52: 200–202.

    PubMed  CAS  Google Scholar 

  • Vogel, T. M., and McCarty, P. L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, Appl. Environ. Microbiol. 49: 1080–1083.

    PubMed  CAS  Google Scholar 

  • Vogel, J. C., Talma, A. S., and Heaton, T. H. E., 1981, Gaseous nitrogen as evidence for denitrification in groundwater, J. Hvdrol. 50: 191–200.

    Article  CAS  Google Scholar 

  • Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21: 722–736.

    Article  PubMed  CAS  Google Scholar 

  • Volkering, F., Breure, A. M., van Andel, J. G., and Rulkens, W. H., 1995, Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons, Appl. Environ. Microbial. 61: 1699–1705.

    CAS  Google Scholar 

  • von Wedel, R. J., Mosquera, J. F., Goldsmith, C. D., Hater, G. R., Wong, A., Fox, T. A., Hunt, W. T., Paules, M. S., Quiros, J. M., and Wiegand, J. W., 1988, Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California, Wat. Sci. Tech. 20: 501–503.

    Google Scholar 

  • Vroblesky, D. A.. and Chapelle, F. H., 1994, Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation, Water Res. Res. 30: 1561–1570.

    Article  CAS  Google Scholar 

  • Wackett, L. P., and Gibson, D. T., 1988, Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida Fl, Appl. Environ. Microbiol. 54: 1703–1708.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Brusseau, G. A., Householder, S. R., and Hanson, R. S., 1989, Survey of microbial oxygenises: trichloroethylene degradation by propane-oxidizing bacteria, Appl. Environ. Microbial. 55: 2960–2964.

    CAS  Google Scholar 

  • Walia, S., Kahn, A., and Rosenthal, N., 1990. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments, Appl. Environ. Microbiol. 56: 254–259.

    PubMed  CAS  Google Scholar 

  • Wan. J., Wilson, J. L., and Kieft, T. L., 1994, Influence of the gas-water interface on transport of microorganisms through unsaturated porous media, Appl. Environ. Microbiol. 60: 509–516.

    Google Scholar 

  • Water Science and Technology Board, Commission on Engineering and Technical Systems, National Research Council, 1993, In Situ Bioremediation National Academy Press, Washington D.C.

    Google Scholar 

  • Weber, W. J., and Corseuil, H. X., 1994, Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates, Wat. Res. 28: 1407–1414.

    Article  CAS  Google Scholar 

  • Weiner, J., and Lovley, D. R., 1997, Stimulation of anaerobic benzene degradation in petroleum-contaminated aquifer sediments with a freshwater benzene-oxidizing, sulfate-reducing inoculum, Appl. Environ. Microbial. (submitted).

    Google Scholar 

  • Werner, P., 1985. A new way for the decontamination of polluted aquifers by biodegradation, Wat. Supply 3: 41–47.

    CAS  Google Scholar 

  • Werner, P., 1991, German experiences in the biodegradation of creosote and gas work-specific substances, in: In Situ Bioreclamation, ( E. R. Hinchee, and R. F. Olfenbuttel, eds.), Butterworth-Heinemann, Stoneham, MA, pp. 539.

    Google Scholar 

  • Westrick, J. J., Mello, J. W., and Thomas, R. F., 1984, The groundwater supply survey, J. Am. Water Works Assoc. 76: 52–59.

    CAS  Google Scholar 

  • White, D. C., Smith, G. A., Gehron, M. J., Parker, J. H., Findlay, R. H., Martz, R. F. Frederickson, H. L., 1983, The ground water aquifer microbiota: biomass, community structure, and nutritional status, Develop. Indus. Microbial. 24: 189–199.

    Google Scholar 

  • Widdel, F., 1988, Microbiology and ecology of sulfate-and sulfur-reducing bacteria, in: Biology of Anaerobic Microorganisms, ( A. J. B. Zehnder, ed., John Wiley & Sons, New York, pp. 469–585.

    Google Scholar 

  • Williams, G. M., Smith, B., and Ross, C. A. M., 1991, The migration and degradation of waste organic compounds in groundwater, Adv. Org. Geochem. 19: 531–543.

    Article  Google Scholar 

  • Wilson, J. T., and Wilson, B. H., 1985, Biotransformation of trichlororethylene in soil, Appl. Environ. Microbiol. 49: 242–243.

    CAS  Google Scholar 

  • Wilson, J. T., McNabb, J. F., Balkwill, D. L., and Ghiorse, W. C., 1983, Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer, Ground Water 21: 134–142.

    Article  Google Scholar 

  • Wilson, B., Smith, G. B., and Rees, J. F., 1986, Biotransformation of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study, Environ. Sci. Technol. 20: 997–1002.

    Article  CAS  Google Scholar 

  • Wilson, B. H., Wilson, J. T., Kampbell, D. H., Bledsoe, B. E., and Armstrong, J. M., 1990a, Biotransformation of monoaromatic and chlorinated hydrocarbons at an aviation gasoline spill site, Geomicrobiol. J. 8: 225–240.

    Article  CAS  Google Scholar 

  • Wilson, G. B., Andrews, J. N., and Bath, A. H., 1990b, Dissolved gas evidence for denitrification in the Lincolnshire groundwaters, Eastern England, J. Hydrol. 113: 51–60.

    Article  CAS  Google Scholar 

  • Wilson, J. T., Armstrong, J. M., and Rafai, H. S., 1994, A full-scale field demonstration on the use of hydrogen peroxide for in situ bioremediation of an aviation gasoline-contaminated aquifer, in: Bioremediation Field Experience, ( E. P. Flathman, E. D. Ferger, and H. J. Exner, eds.), Lewis Publishers, Boca Raton, pp. 333–359.

    Google Scholar 

  • Woods, N. R., and Murrell, J. C., 1989, The metabolism of propane in Rhodococcus rhodochrous PNKbI, J. Gen. Microbiol. 135: 2335–2344.

    CAS  Google Scholar 

  • Wyndham, R. C., Nakatsu, C., Peel, M., Cashore, A., Ng, J., and Szilagyi, F., 1994, Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system, Appl. Environ. Microbiol. 60: 86–93.

    CAS  Google Scholar 

  • Zeyer, J., Kuhn, E. P., and Schwarzenbach, R. P., 1986, Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen, Appl. Environ. Microbiol. 52: 944–947.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, R.T., Lovley, D.R. (1997). Ecology and Biogeochemistry of in Situ Groundwater Bioremediation. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9074-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9074-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9076-4

  • Online ISBN: 978-1-4757-9074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics