Skip to main content

Optimal Quantum Measurements for Two Pure and Mixed States

  • Chapter

Abstract

An explicit formula is obtained for the entropy defect and the (maximum) information for an ensemble of two pure quantum states; an optimal basis is found, that is, an optimal measurement procedure which enables one to obtain the maximum information. Some results are also presented for the case of two mixed states, described by second-order density matrices (for example, spin polarization matrices). It is shown that in the case of two states the optimal measurement is a direct von Neumann measurement performed in the subspace of the two states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.B. Levitin, “On the Quantum Measure of Information”. Proc. of the 4th Conference on Information and Coding Theory, Sec. II,Tashkent, 1969 (English translation: in this book), pp. 111–115.

    Google Scholar 

  2. L.B. Levitin, “Amount of Information and the Quantum-Mechanical Irreversibility of Measurement”. Proc. of the 2nd Intern. Symp. on Info. Theory, Moscow-Yerevan, 1971, p. 144.

    Google Scholar 

  3. L.B. Levitin, “Information Theory for Quantum Systems”. Information, Complexity and Control in Quantum Physics. A. Blaquiere, S. Diner, and G. Lochak, eds., Springer-Verlag, Wien-New York, 1987, pp. 15–47.

    Google Scholar 

  4. L.B. Levitin, “Physical Information Theory. Part II: Quantum Systems”. Proc. of the Workshop on Physics of Computation; PhysComp ‘82, IEEE Computer Society Press, Dallas, 1993, pp. 215–219.

    Google Scholar 

  5. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Pergamon Press, Oxford, 1965.

    MATH  Google Scholar 

  6. J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Springer Verlag, Berlin, 1932.

    MATH  Google Scholar 

  7. E. Arthurs and J.L. Kelly, “On the Simultaneous Measurements of a Pair of Conjugate Observables”. Bell System Tech. J., 44 (1965), pp. 725–729.

    Google Scholar 

  8. L.B. Levitin, and V.V. Mityugov, “Reception of Coherent Signals by Splitting of the Beam”. 1st Conference of Problems of Information Transmission by Laser Radiation, Kiev, 1968.

    Google Scholar 

  9. C.W. Helstrom, J.W.S. Liu, and J.P. Gordon, “Quantum-Mechanical Communication Theory”. Proc. IEEE 58 (10), (1970), p. 1587.

    Article  MathSciNet  Google Scholar 

  10. C.W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York, 1976.

    Google Scholar 

  11. A.S. Holevo, “Informational Aspects of Quantum Measurements”. Prob. Info. Transm., 9 (3) (1973), pp. 31–42.

    MATH  Google Scholar 

  12. L.B. Levitin, “Direct and Indirect Quantum Measurements Yield Equal Maximum Information”. 1981 IEEE Intern. Symp. on Information Theory, Santa Monica, CA, USA, 1981.

    Google Scholar 

  13. L.B. Levitin, “Information in Direct and Indirect Quantum Measurements”. Proc. of the Workshop on Physics of Computation: PhysComp ‘82, IEEE Computer Society Press, Dallas, 1993, pp. 220–222.

    Google Scholar 

  14. E.B. Davies, “Information and Quantum Measurement”. IEEE Trans. on Info. Theory, IT-24, (1979), pp. 596–599.

    Google Scholar 

  15. D.S. Lebedev, L.B. Levitin, “Information Transmission by Electromagnetic Field”. Inform. Control, 9 (1), (1966), pp. 1–22.

    Article  Google Scholar 

  16. V.P. Belavkin and R.L. Stratonovich, “On Optimization of Quasimeasurement of Quantum Observables on Information Criteria”. Proc. of 3rd Intern. Symp. on Info. Theory, Tallin, 1973, pp. 14–18.

    Google Scholar 

  17. V.P. Belavkin and R.L. Stratonovich, “On Optimization of Processing of Quantum Signals by Information Criterion”. Radio Eng. Electron. Physics, 18 (9), (1973), pp. 1839–1844.

    Google Scholar 

  18. L.P. Hughston, R. Josza, and W.K. Wootters, “A Complete Classification of Quantum Ensembles Having a Given Density Matrix”. Phys. Letters A, 183 (1993), pp. 14–18.

    Article  ADS  Google Scholar 

  19. R. Josza, D. Robb, and W.K. Wootters, “Lower Bound for Accessible Information in Quantum Mechanics”. Phys. Rev., 49 (2) (1994), pp. 668–677.

    Article  MathSciNet  ADS  Google Scholar 

  20. L.B. Levitin, “Ideal Physical Information Channel”. Prob. Info. Transm., 1 (1) (1965), pp. 91–93.

    Google Scholar 

  21. L.B. Levitin, “A Thermodynamic Characterization of Ideal Physical Information Channels”. J. of Information and Optimization Sciences,2 (1981), pp. 259266.

    Google Scholar 

  22. L.B. Levitin, “Quantum Amount of Information and Gibbs’ Paradox”. 3rd Intern. Symp. on Info. Theory, Tallin, 1973.

    Google Scholar 

  23. L.B. Levitin, “Quantum Amount of Information and Maximum Work”. Proc. of the 13th IUPAP Conf. on Stat. Physics, D. Cabib, D.G. Kuper, and I. Riess, eds., A. Hilger, Bristol, 1978.

    Google Scholar 

  24. L.B. Levitin, “Gibbs Paradox and Equivalence Relation Between Quantum Information and Work”. Proc. of the Workshop on Physics of Computation: PhysComp ‘82, IEEE Computer Society Press, 1993, pp. 223–226.

    Google Scholar 

  25. C.W. Helstrom, “Detection Theory and Quantum Mechanics”. Information and Control, 10, (1967), p. 254.

    Article  Google Scholar 

  26. B. Schumacher, “Quantum Coding”. Phys. Rev. A (to appear)

    Google Scholar 

  27. R. Josza, B. Schumacher, “A New Proof of the Quantum Noiseless Coding Theorem”. J. of Modern Optics (to appear).

    Google Scholar 

  28. A. Peres, Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht, 1993.

    MATH  Google Scholar 

  29. A. Peres, “Neumark’s Theorem and Quantum Inseparability”. Found. Phys., 20 (1990), p. 1441.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levitin, L.B. (1995). Optimal Quantum Measurements for Two Pure and Mixed States. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds) Quantum Communications and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1391-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1391-3_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1393-7

  • Online ISBN: 978-1-4899-1391-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics